Features of the Processes of Initiation and Development of Sparks in Microstructural Gas Detectors (Review)
- Autores: Razin V.I.1
- 
							Afiliações: 
							- Institute of Nuclear Research, Russian Academy of Sciences
 
- Edição: Nº 2 (2023)
- Páginas: 5-14
- Seção: Articles
- URL: https://cijournal.ru/0032-8162/article/view/670539
- DOI: https://doi.org/10.31857/S0032816223020258
- EDN: https://elibrary.ru/GTQOAR
- ID: 670539
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The features of the processes of initiation and development of spark discharges in microstructural gas detectors of ionizing radiation in laboratory conditions and on charged-particle beams in accelerators are considered. Such aspects as the Raether charge limit, secondary electron emission, avalanche cross-overlap, positive ion feedback, explosive electron emission, cascading of detectors, and the charge density have been analyzed in detail. The better understanding of these effects will make it possible to make a further step in the development of new-type position-sensitive gas detectors.
Sobre autores
V. Razin
Institute of Nuclear Research, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: razin@inr.ru
				                					                																			                												                								117312, Moscow, Russia						
Bibliografia
- Sauli F. // Nucl. Instrum. and Methods Phys. Res. A. 1997. V. 386. № 2−3. P. 531. https://doi.org/10.1016/S0168-9002(96)01172-2
- Raether H. // Electron Avalanches and Breakdown in Gases. London: Butterworths,1964.
- Разин В.И. // ПТЭ. 2021. № 6. С. 5. https://doi.org/10.31857/S0032816221060057
- Francke T., Peskov V. Innovative Applications and Developments of Micro-Pattern Gaseous Detectors. IGI global, 2014. http://doi.org./10.4018/978-1-4666-6014-4
- Thers D., Abbon P., Ball J., Bedfer Y., Bernet C., Carasco C., Delagnes E., Durand D., Faivre J.-C., Fonvieille H., Giganon A., Kunne F., Le Goff J.-M., Lehar F., Magnon A. et al. // Nucl. Instrum. and Methods Phys. Res. A. 2001. V. 416. P. 23. https://doi.org/10.1016/S0168-9002(01)00769-0
- Procureur S., Ball J., Konczykowski P., Moreno B., Moutarde H., Sabatie F. // Nucl. Instrum. and Methods Phys. Res. A. 2010. V. 621. P. 177. https://doi.org/10.1016/j.nima.2010.05.024
- Sauli F. // Nucl. Instrum. and Methods Phys. Res. A. 2002. V. 477. P. 1. https://doi.org/10.1016/S0168-9002(01)01903-9
- Fonte P., Peskov V., Ramsey B.D. // IEEE Trans. Nucl. Scie. 1999. V. 46. P. 321. doi 775537. https://doi.org/10.1109/23
- Nappi E., Peskov V. Imaging gaseous detectors and their applications. Hoboken. NY: Willey, 2013. https://doi.org/10.1002/9783527640294
- Malter L. // Phys. Rev. 1936. V. 50. P. 48. https://doi.org/10.1103/Phys.Rev.50.48
- Iacobaeus C., Danielsson M., Fonte P., Francke T., Ostling J., Peskov V. // IEEE Transactions on NS. 2002. V. 49. № 4 . P. 1622. https://doi.org/10.1109/TNS.2002.801480
- Fonte P., Peskov V., Ramsey B.D. // Nucl. Instrum. and Methods Phys. Res. A. 1998. V. 416. P. 23. https://doi.org/10.1016/SO168-9002(98)00649-4
- Bachmann S., Bressan A., Capeans M. // Nucl. Instrum. and Methods. Phys. Res. A. 2002. V. 479. P. 294. https://doi.org/10.1016/SO168-9002(01)00931-7
- Procureur S., Aune S., Ball J., Charles G., Moreno B., Moutarde H. // Nucl. Instrum. and Methods A. 2011. V. 659. № 1. P. 91. https://doi.org/10.1016/j.nima.2011.08.033
- Procureur S., Aune S., Ball J., Charles G., Moreno B., Moutarde H., Sabatie F. // JINST. 2012. V. 7 № 6. P. C06009. https://doi.org/10.1088/1748-0221/7/06/C06009д
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 










