Bacterial cell wall components as targets for searching for new antibacterial compounds. Methods of study

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

In the current world, antibiotic resistance is one of the most serious threats to both human health and food security. Finding new ways to prevent and overcome the formation of pathogen resistance to antibiotics is an extremely important and urgent task of modern medical science. All bacteria, except mycoplasmas, have a cell wall in which various enzymes, receptors, transporters, channels and antigens are localized. This review is devoted to describing the structure of the major elements of bacterial cell walls and enzymes involved in their biosynthesis and used as molecular targets for screening and selection of new effective antibiotics. Special attention is paid to methods for studying the functional activity and inhibition of these targets. In addition, the review describes the functional characteristics of pore-forming proteins from the outer membrane of Gram-negative bacteria and the molecular mechanisms of antibiotic penetration through porin channels. Analysis of the structure and functional features of targets of different classes of antibiotics is the basis for developing new strategies to overcome bacterial resistance.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Chingizova

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: martyyas@mail.ru
Ресей, Vladivostok, 690022

O. Novikova

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: martyyas@mail.ru
Ресей, Vladivostok, 690022

O. Portnyagina

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: martyyas@mail.ru
Ресей, Vladivostok, 690022

D. Aminin

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: martyyas@mail.ru
Ресей, Vladivostok, 690022

Әдебиет тізімі

  1. Супотницкий М.В. (2011) Механизмы развития резистентности к антибиотикам у бактерий. БИОпрепараты. Профилактика, диагностика, лечение. 2(42), 4–13.
  2. Даудова А.Д., Демина Ю.З., Генатуллина Г.Н., Абдрахманова Р.О., Баева Г.Р., Ясенявская А.Л., Рубальский О.В. (2023) Антибиотикорезистентность. Вызов современности. Антибиотики и химиотерапия. 68(3–4), 66–75.
  3. Monciardini P., Iorio M., Maffioli S., Sosio M., Donadio S. (2014) Discovering new bioactive molecules from microbial sources. Microb. Biotechnol. 7(3), 209–220. https://doi.org/10.1111/1751-7915.12123
  4. Kardos N., Demain A.L. (2011) Penicillin: The medicine with the greatest impacton therapeutic outcomes. Appl. Microbiol. Biotechnol. 92(4), 677–687. https://doi.org/10.1007/s00253-011-3587-6
  5. Monserrat-Martinez A., Gambin Y., Sierecki E. (2019) Thinking outside the bug: molecular targets and strategies to overcome antibiotic resistance. Int. J. Mol. Sci. 20(6), 1255. https://doi.org/10.3390/ijms20061255
  6. Dörr T., Moynihan P.J., Mayer C. (2019) Editorial: bacterial cell wall structure and dynamics. Front. Microbiol. 10, 2051. https://doi.org/10.3389/fmicb.2019.02051
  7. Kuhn A. (2019) The bacterial cell wall and membrane – a treasure chest for antibiotic targets. Subcell. Biochem. 92, 1–5. https://doi.org/10.1007/978-3-030-18768-2_1
  8. Baran A., Kwiatkowska A., Potocki L. (2023) Antibiotics and bacterial resistance – a short story of an endless arms race. Int. J. Mol. Sci. 24(6), 5777. https://doi.org/10.3390/ijms24065777
  9. Munita J.M., Arias C.A. (2016) Mechanisms of antibiotic resistance. Microbiol. Spectr. 4(2). https://doi.org/10.1128/microbiolspec.VMBF-0016- 2015.
  10. Егоров А.М., Уляшова М.М., Рубцова М.Ю. (2018) Бактериальные ферменты и резистентность к антибиотикам. Acta Naturae. 10(4), 39.
  11. Green D.W. (2002) The bacterial cell wall as a source of antibacterial targets. Expert Opin. Ther. Targets. 6(1), 1–19. https://doi.org/10.1517/14728222.6.1.1
  12. Bugg T.D., Braddick D., Dowson C.G., Roper D.I. (2011) Bacterial cell wall assembly: still an attractive antibacterial target. Trends Biotechnol. 29(4), 167–173. https://doi.org/10.1016/j.tibtech.2010.12.006
  13. Gautam A., Vyas R., Tewari R. (2011) Peptidoglycan biosynthesis machinery: a rich source of drug targets. Crit. Rev. Biotechnol. 31(4), 295–336. https://doi.org/10.3109/07388551.2010.525498
  14. Sauvage E., Kerff F., Terrak M., Ayala J.A., Charlier P. (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32(2), 234–258. https://doi.org/10.1111/j.1574-6976.2008.00105.x
  15. Kong K.F., Schneper L., Mathee K. (2010) Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS. 118(1), 1–36. https://doi.org/10.1111/j.1600-0463.2009.02563.x
  16. Schneider T., Sahl H.G. (2010) An oldie but a goodie cell wall biosynthesis as antibiotic target pathway. Int. J. Med. Microbiol. 300(2–3), 161–169. https://doi.org/10.1016/j.ijmm.2009.10.005
  17. Coates A.R., Halls G., Hu Y. (2011) Novel classes of antibiotics or more of the same? Br. J. Pharmacol. 163(1), 184–194. https://doi.org/10.1111/j.1476-5381.2011.01250.x
  18. Wise R. (2011) BSAC Working party on the urgent need: Regenerating antibacterial drug discovery and development. The urgent need for new antibacterial agents. J. Antimicrob. Chemother. 66(9), 1939–1940. https://doi.org/10.1093/jac/dkr261
  19. Larsson C. (2012) Bacterial sortase A as a drug target. Uppsala University Press: Sweden, 49 p.
  20. Garde S., Chodisetti P.K., Reddy M. (2021) Peptidoglycan: structure, synthesis, and regulation. EcoSal Plus. 9(2), eESP-0010-2020. https://doi.org/10.1128/ecosalplus.ESP-0010-2020
  21. Barreteau H., Kovac A., Boniface A., Sova M., Gobec S., Blanot D. (2008) Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32(2), 168–207. https://doi.org/10.1111/j.1574-6976.2008.00104.x
  22. El Zoeiby A., Sanschagrin F., Levesque R.C. (2003) Structure and function of the Mur enzymes: development of novel inhibitors. Mol. Microbiol. 47(1), 1–12. https://doi.org/10.1046/j.1365-2958.2003.03289.x
  23. Kahan F.M., Kahan J.S., Cassidy P.J., Kropp H. (1974) The mechanism of action off osfomycin (phosphonomycin). Ann. NY Acad. Sci. 235, 364–386. https://doi.org/10.1111/j.1749-6632.1974.tb43277.x
  24. Eniyan K., Kumar A., Rayasam G.V., Perdih A., Bajpai U. (2016) Development of a one-pot assay for screening and identification of Mur pathway inhibitors in Mycobacterium tuberculosis. Sci. Rep. 13(6), 35134. https://doi.org/10.1038/srep35134
  25. Shinde Y., Ahmad I., Surana S., Patel H. (2021) The Mur enzymes chink in the armour of Mycobacterium tuberculosis cell wall. Eur. J. Med. Chem. 15(222), 113568. https://doi.org/10.1016/j.ejmech.2021.113568
  26. Hrast M., Rožman K., Ogris I., Škedelj V., Patin D., Sova M., Barreteau H., Gobec S., Grdadolnik S.G., Zega A. (2019) Evaluation of the published kinase inhibitor set to identify multiple inhibitors of bacterial ATP-dependent mur ligases. J. Enzyme Inhib. Med. Chem. 34(1), 1010–1017. https://doi.org/10.1080/14756366.2019.1608981
  27. Yang Y., Severin A., Chopra R., Krishnamurthy G., Singh G., Hu W., Keeney D., Svenson K., Petersen P.J., Labthavikul P., Shlaes D.M., Rasmussen B.A., Failli A.A., Shumsky J.S., Kutterer K.M., Gilbert A., Mansour T.S. (2006) 3,5-dioxopyrazolidines, novel inhibitors of UDP-N- acetylenolpyruvylglucosamine reductase (MurB) with activity against gram-positive bacteria. Antimicrob. Agents Chemother. 50(2), 556–564. https://doi.org/10.1128/AAC.50.2.556-564.2006
  28. Shapiro A.B., Livchak S., Gao N., Whiteaker J., Thresher J., Jahić H., Huang J., Gu R.F. (2012) A homogeneous, high-throughput-compatible, fluorescence intensity-based assay for UDP-N-acetylenolpyruvylglucosamine reductase (MurB) with nanomolar product detection. J. Biomol. Screen. 17(3), 327–338. https://doi.org/10.1177/1087057111425188
  29. Marquardt J.L., Siegele D.A., Kolter R., Walsh C.T. (1992) Cloning and sequencing of Escherichia coli murZ and purification of its product, a UDP-N-acetylglucosamine enolpyruvyl transferase. J. Bacteriol. 174(17), 5748–5752. https://doi.org/10.1128/jb.174.17.5748-5752.1992
  30. Baum E.Z., Montenegro D.A., Licata L., Turchi I., Webb G.C., Foleno B.D., Bush K. (2001) Identification and characterization of new inhibitors of the Escherichia coli MurA enzyme. Antimicrob. Agents Chemother. 45(11), 3182–3188. https://doi.org/10.1128/AAC.45.11.3182-3188.2001
  31. Osman K., Evangelopoulos D., Basavannacharya C., Gupta A., McHugh T.D., Bhakta S., Gibbons S. (2012) An antibacterial from Hypericum acmosepalum inhibits ATP-dependent MurE ligase from Mycobacterium tuberculosis. Int. J. Antimicrob. Agents. 39(2), 124–129. https://doi.org/10.1016/j.ijantimicag.2011.09.018
  32. Humnabadkar V., Prabhakar K.R., Narayan A., Sharma S., Guptha S., Manjrekar P., Chinnapattu M., Ramachandran V., Hameed S.P., Ravishankar S., Chatterji M. (2014) UDP-N-acetylmuramic acid l-alanine ligase (MurC) inhibition in a tolC mutant Escherichia coli strain leads to cell death. Antimicrob. Agents Chemother. 8(10), 6165–6171. https://doi.org/10.1128/AAC.02890-14
  33. Lanzetta P.A., Alvarez L.J., Reinach P.S., Candia O.A. (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100(1), 95–97. https://doi.org/10.1016/0003-2697(79)90115-5
  34. McCoy A.J., Sandlin R.C., Maurelli A.T. (2003) In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J. Bacteriol. 185(4), 1218–1228. https://doi.org/10.1128/JB.185.4.1218-1228.2003
  35. Kumar A., Saranathan R., Prashanth K., Tiwary B.K., Krishna R. (2017) Inhibition of the MurA enzyme in Fusobacterium nucleatum by potential inhibitors identified through computational and in vitro approaches. Mol. BioSystems. 13(5), 939–954. https://doi.org/10.1039/c7mb00074j
  36. Keeley A., Ábrányi-Balogh P., Hrast M., Imre T., Ilaš J., Gobec S., Keserű G.M. (2018) Heterocyclic electrophiles as new MurA inhibitors. Arch. Pharm. (Weinheim). 351(12), e1800184. https://doi.org/10.1002/ardp.201800184
  37. Benson T.E., Marquardt J.L., Marquardt A.C., Etzkorn F.A., Walsh C.T. (1993) Over expression, purification, and mechanistic study of UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry. 32(8), 2024–30. https://doi.org/10.1021/bi00059a019
  38. Tomasiс T., Zidar N., Kovac A., Turk S., Simcic M., Blanot D., Müller-Premru M., Filipic M., Grdadolnik S.G., Zega A., Anderluh M., Gobec S., Kikelj D., Peterlin Masic L. (2010) 5-Benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial Mur ligases. Chem. Med. Chem. 5(2), 286–295. https://doi.org/10.1002/cmdc.200900449
  39. Tomasiс T., Kovaс A., Klebe G., Blanot D., Gobec S., Kikelj D., Masic L.P. (2012) Virtual screening for potential inhibitors of bacterial MurC and MurD ligases. J. Mol. Model. 18(3), 1063–1072. https://doi.org/10.1007/s00894-011-1139-8
  40. Ravishankar S., Kumar V.P., Chandrakala B., Jha R.K., Solapure S.M., de Sousa S.M. (2005) Scintillation proximity assay for inhibitors of Escherichia coli MurG and, optionally, MraY. Antimicrob. Agents Chemother. 49(4), 1410–1418. https://doi.org/10.1128/aac.49.4.1410-1418.2005
  41. Solapure S.M., Raphael P., Gayathri C.N., Barde S.P., Chandrakala B., Das K.S., De Sousa S.M. (2005) Development of a microplate-based scintillation proximity assay for MraY using a modified substrate. J. Biomol. Screen. 10(2), 149–156. https://doi.org/10.1177/1087057104272007
  42. Duncan K., van Heijenoort J., Walsh C.T. (1990) Purification and characterization of the D-alanyl-D-alanine-adding enzyme from Escherichia coli. Biochemistry. 29(9), 2379–2386. https://doi.org/10.1021/bi00461a023
  43. Anderson J.S., Meadow P.M., Haskin M.A., Strominger J.L. (1966) Biosynthesis of the peptidoglycan of bacterial cell walls. I. Utilization of uridine diphosphate acetylmuramyl pentapeptide and uridine diphosphate acetylglucosamine for peptidoglycan synthesis by particulate enzymes from Staphylococcus aureus and Micrococcus lysodeikticus. Arch. Biochem. Biophys. 116(1), 487–515. https://doi.org/10.1016/0003-9861(66)90056-7
  44. Baum E.Z., Crespo-Carbone S.M., Abbanat D., Foleno B., Maden A., Goldschmidt R., Bush K. (2006) Utility of muropeptide ligase for identification of inhibitors of the cell wall biosynthesis enzyme MurF. Antimicrob. Agents Chemother. 50(1), 230–236. https://doi.org/10.1128/AAC.50.1.230-236.2006
  45. Baum E.Z., Crespo-Carbone S.M., Klinger A., Foleno B.D., Turchi I., Macielag M., Bush K. (2007) A MurF inhibitor that disrupts cell wall biosynthesis in Escherichia coli. Antimicrob. Agents Chemother. 51(12), 4420–4426. https://doi.org/10.1128/AAC.00845-07
  46. Crouvoisier M., Mengin-Lecreulx D., van Heijenoort J. (1999) UDP-N-acetylglucosamine:N-acetylmuramoyl-(pentapeptide) pyrophosphoryl undecaprenol N-acetylglucosamine transferase from Escherichia coli: overproduction, solubilization, and purification. FEBS Lett. 449(2–3), 289–292. https://doi.org/10.1016/s0014-5793(99)00412-3
  47. Ha S., Walker D., Shi Y., Walker S. (2000) The 1.9 Å crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci. 9(6), 1045–1052. https://doi.org/10.1110/ps.9.6.1045
  48. Hu Y., Chen L., Ha S., Gross B., Falcone B., Walker D., Mokhtarzadeh M., Walker S. (2003) Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Proc. Natl. Acad. Sci. USA. 100(3), 845–849. https://doi.org/10.1073/pnas.0235749100
  49. Liu Y., Breukink E. (2016) The membrane steps of bacterial cell wall synthesis as antibiotic targets. Antibiotics (Basel). 5(3), 28. https://doi.org/10.3390/antibiotics5030028
  50. Mengin-Lecreulx D., Texier L., Rousseau M., van Heijenoort J. (1991) The murG gene of Escherichia coli codes for the UDP-N-acetylglucosamine: N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase involved in the membrane steps of peptidoglycan synthesis. J. Bacteriol. 173(15), 4625–4636. https://doi.org/10.1128/jb.173.15.4625-4636.1991
  51. Lopez-Marquez R.L., Theory L., Palmgren M.G., Pomorski T.G. (2014) P4-ATPases: lipid flippases in cell membranes. Pflugers. Arch. 466(7), 1227–1240. https://doi.org/10.1007/s00424-013-1363-4
  52. Hoffman G.G. (2005) Octamer formation and stability in mitochondrial creatine kinase of protostomic invertebrates: Doctoral dissertation, Florida State University.
  53. Wu G. (2020) The important role of taurine, creatine, carnosine, anserin and 4-hydroxyproline in human nutrition and health. Amino Acids. 52(3), 329–360. https://doi.org/10.1007/s00726-020-02823-6
  54. Daleke D.L. (2003) Regulation of phospholipid asymmetry of the trans-bilayer plasma membrane. J. Lipid Res. 44(2), 233–242. https://doi.org/10.1194/JLR.R200019- JLR200
  55. Ansari I.U., Longacre M.J., Paulusma C.C., Stoker S.W., Kendrick M.A., MacDonald M.J. (2015) Characteristics of phospholipid translocases (flippases) of P4 ATPase in human and rat pancreatic beta cells: their gene suppression inhibits insulin secretion. J. Biol. Chem. 290(38), 23110–23123. https://doi.org/10.1074/jbc. M115.655027
  56. Pianalto K.M., Billmyre R.B., Telzrow C.L., Alspaugh J.A. (2019) Roles for stress response and cell wall biosynthesis pathways in caspofungin tolerance in Cryptococcus neoformans. Genetics. 213(1), 213–227. https://doi.org/10.1534/genetics.119.302290
  57. Kraus P.R., Fox D. S., Cox G.M., Heitman J. (2003) The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Mol. Microbiol. 48(5). 1377–1387. https://doi.org/10.1046/j.1365-2958.2003.03508.x
  58. Del Poeta M., Cruz M. C., Cardenas M.E., Perfect J.R., Heitman J. (2000) Synergistic antifungal activities of bafilomycin A(1), fluconazole, and the pneumocandin MK-0991/caspofungin acetate (L-743,873) with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans. Antimicrob. Agents Chemother. 44(3), 739–746. https://doi.org/10.1128/AAC.44.3.739-746.2000
  59. Cao C., Xue C. (2020) More than flipping the lid: Cdc50 contributes to echinocandin resistance by regulating calcium homeostasis in Cryptococcus neoformans. Microb. Cell. 7(4), 115–118. https://doi.org/10.15698/mic2020.04.714
  60. Cao C., Wang Y., Husain S., Soteropoulos P., Xue C.A. (2019) Mechanosensitive channel governs lipid flippase-mediated echinocandin resistance in Cryptococcus neoformans. mBio. 10(6), e01952-19. https://doi.org/10.1128/mBio.01952-19
  61. Illien F., Rodriguez N., Amoura M., Joliot A., Pallerla M., Cribier S., Burlina F., Sagan S. (2016) Quantitative fluorescence spectroscopy and flow cytometry analyses of cell-penetrating peptides internalization pathways: optimization, pitfalls, comparison with mass spectrometry quantification. Sci. Rep. 6, 36938. https://doi.org/10.1038/srep36938
  62. Carpenter E.P., Beis K., Cameron A.D., Iwata S. (2008) Overcoming the challenges of membrane protein crystallography. Curr. Opin. Struct. Biol. 18(5), 581–586. https://doi.org/10.1016/j.sbi.2008.07.001
  63. Avci F.G., Akbulut B.S., Ozkirimli E. (2018) Membrane active peptides and their biophysical characterization. Biomolecules. 8(3), 77. https://doi.org/10.3390/biom8030077
  64. Tancer R.J. (2022) “Flippase Inhibitors as Antimicrobial Agents”. Seton Hall University Dissertations and Theses (ETDs). 2981. https://scholarship.shu.edu/dissertations/2981
  65. Suzuki H., van Heijenoort Y., Tamura T., Mizoguchi J., Hirota Y., van Heijenoort J. (1980) In vitro peptidoglycan polymerization catalysed by penicillin binding protein 1b of Escherichia coli K-12. FEBS Lett. 110(2), 245–249. https://doi.org/10.1016/0014-5793(80)80083-4
  66. Ishino F., Mitsui K., Tamaki S., Matsuhashi M. (1980) Dual enzyme activities of cell wall peptidoglycan synthesis, peptidoglycan transglycosylase and penicillin-sensitive transpeptidase, in purified preparations of Escherichia coli penicillin-binding protein 1A. Biochem. Biophys Res. Commun. 97(1), 287–293. https://doi.org/10.1016/s0006-291x(80)80166-5
  67. Nakagawà J., Tamaki S., Matsuhashi M. (1979) Purified penicillin binding proteins 1Bs from Escherichia coli membrane showing activities of both peptidoglycan polymerase and peptidoglycan crosslinking enzyme. Agric. Biol. Chem. 43(6), 1379–1380. https://doi.org/10.1080/00021369.1979.10863634
  68. Nakagawa J., Tamaki S., Tomioka S., Matsuhashi M. (1984) Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1Bs of Escherichia coli with activities of transglycosylase and transpeptidase. J. Biol. Chem. 259(22), 13937–13946.
  69. Terrak M., Ghosh T.K., van Heijenoort J., Van Beeumen J., Lampilas M., Aszodi J., Ayala J.A., Ghuysen J.M., Nguyen-Distèche M. (1999) The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan-polymerizing penicillin-binding protein 1b of Escherichia coli. Mol. Microbiol. 34(2), 350–364. https://doi.org/10.1046/j.1365-2958.1999.01612.x
  70. Strominger J.L., Izaki K., Matsuhashi M., Tipper D.J. (1967) Peptidoglycan transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reactions. Fed. Proc. 26(1), 9–22.
  71. Page M.P. (2012) Beta-lactam antibiotics. In: Antibiotic Discovery and Development. Eds Dougherty T.J., Pucci M.J. Springer, US, 79–117.
  72. Halliday J., McKeveney D., Muldoon C., Rajaratnam P., Meutermans W. (2006) Targeting the forgotten transglycosylases. Biochem. Pharmacol. 71(7), 957–967. https://doi.org/10.1016/j.bcp.2005.10.030
  73. Meadow P.M., Anderson J.S., Strominger J.L. (1964) Enzymatic polymerization of UDP-acetylmuramyl.L-ala.D-glu.L-lys.D-ala.D-ala and UDP-acetylglucosamine by a particulate enzyme from Staphylococcus aureus and its inhibition by antibiotics. Biochem. Biophys. Res. Commun. 14, 382–387. https://doi.org/10.1016/s0006-291x(64)80014-0
  74. Van Heijenoort Y., Derrien M., van Heijenoort J. (1978) Polymerization by transglycosylation in the biosynthesis of the peptidoglycan of Escherichia coli K 12 and its inhibition by antibiotics. FEBS Lett. 89(1), 141–144. https://doi.org/10.1016/0014-5793(78)80540-7
  75. Huang C.Y., Shih H.W., Lin L.Y., Tien Y.W., Cheng T.J., Cheng W.C., Wong C.H., Ma C. (2012) Crystal structure of Staphylococcus aureus transglycosylase in complex with a lipid II analog and elucidation of peptidoglycan synthesis mechanism. Proc. Natl. Acad. Sci. USA. 109(17), 6496–6501. https://doi.org/10.1073/pnas.1203900109
  76. Chen L., Walker D., Sun B., Hu Y., Walker S., Kahne D. (2003) Vancomycin analogues active against vanA-resistant strains inhibit bacterial transglycosylase without binding substrate. Proc. Natl. Acad. Sci. USA. 100(10), 5658–5663. https://doi.org/10.1073/pnas.0931492100
  77. Hara H., Suzuki H. (1984) A novel glycan polymerase that synthesizes uncross-linked peptidoglycan in Escherichia coli. FEBS Lett. 168(1), 155–160. https://doi.org/10.1016/0014-5793(84)80226-4
  78. Galley J.D., Nelson M.C., Yu Z., Dowd S.E., Walter J., Kumar P.S., Lyte M., Bailey M.T. (2014) Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol. 14, 189. https://doi.org/10.1186/1471-2180-14-189
  79. Born P., Breukink E., Vollmer W. (2006) In vitro synthesis of cross-linked murein and its attachment to sacculi by PBP1A from Escherichia coli. J. Biol. Chem. 281(37), 26985–26993. https://doi.org/10.1074/jbc.M604083200
  80. Izaki K., Matsuhashi M., Strominger J.L. (1968) Biosynthesis of the peptidoglycan of bacterial cell walls. 8. Peptidoglycan transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reaction in strains of Escherichia coli. J. Biol. Chem. 243(11), 3180–3192.
  81. Mirelman D., Yashouv-Gan Y., Schwarz U. (1976) Peptidoglycan biosynthesis in a thermosensitive division mutant of Escherichia coli. Biochemistry. 15(9), 1781–1790. https://doi.org/10.1021/bi00654a001
  82. de Jonge B.L., Chang Y.S., Gage D., Tomasz A. (1992) Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A. J. Biol. Chem. 267(16), 11248–11254.
  83. Barrett D., Wang T.S., Yuan Y., Zhang Y., Kahne D., Walker S. (2007) Analysis of glycan polymers produced by peptidoglycan glycosyltransferases. J. Biol. Chem. 282(44), 31964–31971. https://doi.org/10.1074/jbc.M705440200
  84. Helassa N., Vollmer W., Breukink E., Vernet T., Zapun A. (2012) The membrane anchor of penicillin-binding protein PBP2a from Streptococcus pneumoniae influences peptidoglycan chain length. FEBS J. 279(11), 2071–2081. https://doi.org/10.1111/j.1742-4658.2012.08592.x
  85. Schwartz B., Markwalder J.A., Wang Y. (2001) Lipid II: total synthesis of the bacterial cell wall precursor and utilization as a substrate for glycosyltransfer and transpeptidation by penicillin binding protein (PBP) 1b of Escherichia coli. J. Am. Chem. Soc. 123(47), 11638–11643. https://doi.org/10.1021/ja0166848
  86. Schwartz B., Markwalder J.A., Seitz S.P., Wang Y., Stein R.L. (2002) A kinetic characterization of the glycosyltransferase activity of Eschericia coli PBP1b and development of a continuous fluorescence assay. Biochemistry. 41(41), 12552–12561. https://doi.org/10.1021/bi026205x
  87. Bertsche U., Breukink E., Kast T., Vollmer W. (2005) In vitro murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase-transpeptidase PBP1B from Escherichia coli. J. Biol. Chem. 280(45), 38096–38101. https://doi.org/10.1074/jbc.M508646200
  88. Biboy J., Bui N.K., Vollmer W. (2013) In vitro peptidoglycan synthesis assay with lipid II substrate. Methods Mol. Biol. 966, 273–288. https://doi.org/10.1007/978-1-62703-245-2_17
  89. Jha R.K., de Sousa S.M. (2006) Microplate assay for inhibitors of the transpeptidase activity of PBP1b of Escherichia coli. J. Biomol. Screen. 11(8), 1005–1014. https://doi.org/10.1177/1087057106294364
  90. Chandrakala B., Elias B.C., Mehra U., Umapathy N.S., Dwarakanath P., Balganesh T.S., de Sousa S.M. (2001) Novel scintillation proximity assay for measuring membrane-associated steps of peptidoglycan biosynthesis in Escherichia coli. Antimicrob. Agents Chemother. 45(3), 768–775. https://doi.org/10.1128/AAC.45.3.768-775.2001
  91. Chandrakala B., Shandil R.K., Mehra U., Ravishankar S., Kaur P., Usha V., Joe B., de Sousa S.M. (2004) High-throughput screen for inhibitors of transglycosylase and/or transpeptidase activities of Escherichia coli penicillin binding protein 1b. Antimicrob. Agents Chemother. 48(1), 30–40. https://doi.org/10.1128/AAC.48.1.30-40.2004
  92. Ramachandran V., Chandrakala B., Kumar V.P., Usha V., Solapure S.M., de Sousa S.M. (2006) Screen for inhibitors of the coupled transglycosylase-transpeptidase of peptidoglycan biosynthesis in Escherichia coli. Antimicrob. Agents Chemother. 50(4), 1425–1432. https://doi.org/10.1128/AAC.50.4.1425-1432.2006
  93. Adam M., Damblon C., Jamin M., Zorzi W., Dusart V., Galleni M., el Kharroubi A., Piras G., Spratt B.G., Keck W. Coyette J., Ghuysen J.M., Nguyen-Disteche M., Frere J.M. (1991) Acyltransferase activities of the high-molecular-mass essential penicillin-binding proteins. Biochem. J. 279(2), 2601–2604. https://doi.org/10.1042/bj2790601
  94. Zuegg J., Muldoon C., Adamson G., McKeveney D., Thanh G.L., Premraj R., Becker B., Cheng M., Elliott A.G., Huang J.X., Butler M.S., Bajaj M., Seifert J., Singh L., Galley N.F., Roper D.I., Lloyd A.J., Dowson C.G., Cheng T.-J., Cheng W.-C., Demon D., Meyer E., Meutermans W., Cooper M.A. (2015) Carbohydrate scaffolds as glycosyltransferase inhibitors with in vivo antibacterial activity. Nat. Commun. 6, 7719. https://doi.org/10.1038/ncomms8719
  95. Offant J., Terrak M., Derouaux A., Breukink E., Nguyen-Distèche M., Zapun A., Vernet T. (2010) Optimization of conditions for the glycosyltransferase activity of penicillin-binding protein 1a from Thermotoga maritima. FEBS J. 277(20), 4290–4298. https://doi.org/10.1111/j.1742-4658.2010.07817.x
  96. Derouaux A., Turk S., Olrichs N.K., Gobec S., Breukink E., Amoroso A., Offant J., Bostock J., Mariner K., Chopra I., Vernet T., Zervosen A., Joris B., Frère J.M., Nguyen-Distèche M., Terrak M. (2011) Small molecule inhibitors of peptidoglycan synthesis targeting the lipid II precursor. Biochem. Pharmacol. 81(9), 1098–1105. https://doi.org/10.1016/j.bcp.2011.02.008
  97. Cheng T.J., Sung M.T., Liao H.Y., Chang Y.F., Chen C.W., Huang C.Y., Chou L.Y., Wu Y.D., Chen Y.H., Cheng Y.S., Wong C.H., Ma C., Cheng W.C. (2008) Domain requirement of moenomycin binding to bifunctional transglycosylases and development of high-throughput discovery of antibiotics. Proc. Natl. Acad. Sci. USA. 105(2), 431–436. https://doi.org/10.1073/pnas.0710868105
  98. Obeng E.M., Dullah E.C., Razak N.S.A., Danquah M.K., Budiman C., Ongkudon C.M. (2017) Elucidating endotoxin-biomolecule interactions with FRET: extending the frontiers of their supramolecular complexation. J. Biol. Methods. 4(2), e71. https://doi.org/10.14440/jbm.2017.172
  99. Spratt B.G. (1977) Properties of the penicillin-binding proteins of Escherichia coli K12. Eur. J. Biochem. 72(2), 341–352. https://doi.org/10.1111/j.1432-1033.1977.tb11258.x
  100. Roychoudhury S., Kaiser R.E., Brems D.N., Yeh W.K. (1996) Specific interaction between beta-lactams and soluble penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus: development of a chromogenic assay. Antimicrob. Agents Chemother. 40(9), 2075–2079. https://doi.org/10.1128/AAC.40.9.2075
  101. Branstrom A.A., Midha S., Goldman R.C. (2002) In situ assay for identifying inhibitors of bacterial transglycosylase. FEMS Microbiol. Lett. 191(2), 187–190. https://doi.org/10.1111/j.1574-6968.2000.tb09338.x
  102. Sun D., Cohen S., Mani N., Murphy C., Rothstein D.M. (2002) A pathway-specific cell based screening system to detect bacterial cell wall inhibitors. J. Antibiot. (Tokyo). 55(3), 279–287. https://doi.org/10.7164/antibiotics.55.279
  103. Sauvage E., Terrak M. (2016) Glycosyltransferases and transpeptidases/penicillin-binding proteins: valuable targets for new antibacterials. Antibiotics (Basel). 5(1), 12. https://doi.org/10.3390/antibiotics5010012
  104. Vollmer W., Höltje J.V. (2000) A simple screen for murein transglycosylase inhibitors. Antimicrob. Agents Chemother. 44(5), 1181–1185. https://doi.org/10.1128/AAC.44.5.1181-1185.2000
  105. Barbosa M.D., Ross H.O., Hillman M.C., Meade R.P., Kurilla M.G., Pompliano D.L. (2002) A multitarget assay for inhibitors of membrane-associated steps of peptidoglycan biosynthesis. Anal. Biochem. 306(1), 17–22. https://doi.org/10.1006/abio.2001.5691
  106. Barbosa M.D., Yang G., Fang J., Kurilla M.G., Pompliano D.L. (2002) Development of a whole-cell assay for peptidoglycan biosynthesis inhibitors. Antimicrob. Agents Chemother. 46(4), 943–946. https://doi.org/10.1128/AAC.46.4.943-946.2002
  107. Alksne L.E., Projan S.J. (2000) Bacterial virulence as a target for antimicrobial chemotherapy. Curr. Opin. Biotechnol. 11(6), 625–636. https://doi.org/10.1016/s0958-1669(00)00155-5
  108. Mazmanian S.K., Liu G., Ton-That H., Schneewind O. (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science. 285(5428), 760–763. https://doi.org/10.1126/science.285.5428.760
  109. Mazmanian S.K., Liu G., Jensen E.R., Lenoy E., Schneewind O. (2000) Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc. Natl. Acad. Sci. USA. 97(10), 5510–5515. https://doi.org/10.1073/pnas.080520697
  110. Mazmanian S.K., Ton-That H., Su K., Schneewind O. (2002) An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc. Natl. Acad. Sci. USA. 99(4), 2293–2298. https://doi.org/10.1073/pnas.032523999
  111. Mazmanian S.K., Skaar E.P., Gaspar A.H., Humayun M., Gornicki P., Jelenska J., Joachmiak A., Missiakas D.M., Schneewind O. (2003) Passage of heme-iron across the envelope of Staphylococcus aureus. Science. 299(5608), 906–909. https://doi.org/10.1126/science.1081147
  112. Hendrickx A.P., Budzik J.M., Oh S.Y., Schneewind O. (2011) Architects at the bacterial surface – sortases and the assembly of pili with isopeptide bonds. Nat. Rev. Microbiol. 9(3), 166–176. https://doi.org/10.1038/nrmicro2520
  113. Schneewind O., Missiakas D.M. (2012) Protein secretion and surface display in Gram-positive bacteria. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 367(1592), 1123–1139. https://doi.org/10.1098/rstb.2011.0210
  114. Maresso A.W., Wu R., Kern J.W., Zhang R., Janik D., Missiakas D.M., Duban M.E., Joachimiak A., Schneewind O. (2007) Activation of inhibitors by sortase triggers irreversible modification of the active site. J. Biol. Chem. 282(32), 23129–23139. https://doi.org/10.1074/jbc.M701857200
  115. Marraffini L.A., Schneewind O. (2005) Anchor structure of staphylococcal surface proteins. V. Anchor structure of the sortase B substrate IsdC. J. Biol. Chem. 280(16), 16263–16271. https://doi.org/10.1074/jbc.M500071200
  116. Ton-That H., Liu G., Mazmanian S.K., Faull K.F., Schneewind O. (1999) Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc. Natl. Acad. Sci. USA. 96(22), 12424–12429. https://doi.org/10.1073/pnas.96.22.12424
  117. Jacobitz A.W., Kattke M.D., Wereszczynski J., Clubb R.T. (2017) Sortase transpeptidases: structural biology and catalytic mechanism. Adv. Protein Chem. Struct. Biol. 109, 223–264. https://doi.org/10.1016/bs.apcsb.2017.04.008
  118. Maresso A.W., Schneewind O. (2008) Sortase as a target of anti-infective therapy. Pharmacol. Rev. 60(1), 128–141. https://doi.org/10.1124/pr.107.07110
  119. Kang S.S., Kim J.G., Lee T.H., Oh K.B. (2006) Flavonols inhibit sortases and sortase-mediated Staphylococcus aureus clumping to fibrinogen. Biol. Pharm. Bull. 29(8), 1751–1755. https://doi.org/10.1248/bpb.29.1751
  120. Kim S.H., Shin D.S., Oh M.N., Chung S.C., Lee J.S., Chang I.M., Oh K.B. (2003) Inhibition of sortase, a bacterial surface protein anchoring transpeptidase, by beta-sitosterol-3-O-glucopyranoside from Fritillaria verticillata. Biosci. Biotechnol. Biochem. 67(11), 2477–2479. https://doi.org/10.1271/bbb.67.2477
  121. Wang L., Bi C., Cai H., Liu B., Zhong X., Deng X., Wang T., Xiang H., Niu X., Wang D. (2015) The therapeutic effect of chlorogenic acid against Staphylococcus aureus infection through sortase A inhibition. Front. Microbiol. 6, 1031. https://doi.org/10.3389/fmicb.2015.01031
  122. Wang J., Li H., Pan J., Dong J., Zhou X., Niu X., Deng X. (2018) Oligopeptide targeting sortase A as potential anti-infective therapy for Staphylococcus aureus. Front. Microbiol. 9, 245. https://doi.org/10.3389/fmicb.2018.00245
  123. Nitulescu G., Nicorescu I.M., Olaru O.T., Ungurianu A., Mihai D.P., Zanfirescu A., Nitulescu G.M., Margina D. (2017) Molecular docking and screening studies of new natural sortase A inhibitors. Int. J. Mol. Sci. 18(10), 2217. https://doi.org/10.3390/ijms18102217
  124. Armstrong J.J., Baddiley J., Buchanan J.G., Carss B., Greenberg G.R. (1958) Isolation and structure of ribitol phosphate derivatives (teichoic acids) from bacterial cell walls. J. Chem. Soc. 4344–4354. https://doi.org/10.1039/JR9580004344
  125. Rajagopal M., Walker S. (2017) Envelope structures of gram-positive bacteria. Curr. Top. Microbiol. Immunol. 404, 1–44. https://doi.org/10.1007/82_2015_5021
  126. Baddiley J. (1972) Teichoic acids in cell walls and membranes of bacteria. Essays Biochem. 8, 35–77.
  127. Naumova I.B. (1988) The teichoic acids of actinomycetes. Microbiol. Sci. 5(9), 275–279.
  128. Fischer W. (1988) Physiology of lipoteichoic acids in bacteria. Adv. Microb. Physiol. 29, 233–302. https://doi.org/10.1016/s0065-2911(08)60349-5
  129. Pasquina L.W., Santa Maria J.P., Walker S. (2013) Teichoic acid biosynthesis as an antibiotic target. Curr. Opin. Microbiol. 16(5), 531–537. https://doi.org/10.1016/j.mib.2013.06.014
  130. Потехина Н.В. (2006) Тейхоевые кислоты актиномицетов и других грамположительных бактерий. Успехи биол. химии. 46, 225–278.
  131. Браун Э. Д., Флайгейр Д., Хазенбос В., Лехар С.М., Мариатхасан С., Морисаки Д.Х., Пиллоу Т.Х., Стабен Л., Вандлен Р., Коэфоэд К., Страндх М., Андерсен П.С. (2019) Антитела против стеночной тейхоевой кислоты и их конъюгаты. Патент РФ RU 2687044 C2. https://patents.google.com/patent/RU2687044C2/ru
  132. Mann P.A., Müller A., Wolff K.A., Fischmann T., Wang H., Reed P., Roemer T. (2016). Chemical genetic analysis and functional characterization of staphylococcal wall teichoic acid 2-epimerases reveals unconventional antibiotic drug targets. PLoS Pathogens. 12(5), e1005585. https://doi.org/10.1371/journal.ppat.1005585
  133. Swoboda J.G., Meredith T.C., Campbell J., Brown S., Suzuki T., Bollenbach T., Malhowski A.J., Kishony R., Gilmore M.S., Walker S. (2009) Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. ACS Chem. Biol. 4(10), 875–883. https://doi.org/10.1021/cb900151k
  134. Lee S.H., Wang H., Labroli M., Koseoglu S., Zuck P., Mayhood T., Gill C., Mann P., Sher X., Ha S., Yang S.W., Mandal M., Yang C., Liang L., Tan Z., Tawa P., Hou Y., Kuvelkar R., DeVito K., Wen X., Xiao J., Batchlett M., Balibar C.J., Liu J., Xiao J., Murgolo N., Garlisi C.G., Sheth P.R., Flattery A., Su J., Tan C., Roemer T. (2016) TarO-specific inhibitors of wall teichoic acid biosynthesis restore β-lactam efficacy against methicillin-resistant staphylococci. Sci. Transl. Med. 8(329), 329–332. https://doi.org/10.1126/scitranslmed.aad7364
  135. Rahman O., Dover L.G., Sutcliffe I.C. (2009) Lipoteichoic acid biosynthesis: two steps forwards, one step sideways? Trends Microbiol. 17(6), 219–225. https://doi.org/10.1016/j.tim.2009.03.003
  136. Brade L., Brade H., Fischer W.A. (1990) 28 kDa protein of normal mouse serum binds lipopolysaccharides of gram-negative and lipoteichoic acids of gram-positive bacteria. Microb. Pathog. 9(5), 355–362. https://doi.org/10.1016/0882-4010(90)90069-3
  137. Shiraishi T., Matsuzaki C., Chiou T.Y., Kumeta H., Kawada M., Yamamoto K., Takahashi T., Yokota S.I. (2024) Lipoteichoic acid composed of poly-glycerolphosphate containing l-lysine and involved in immunoglobulin A-inducing activity in Apilactobacillus genus. Int. J. Biol. Macromol. 271(Pt 1), 132540. https://doi.org/10.1016/j.ijbiomac.2024.132540
  138. Ryu Y.H., Baik J.E., Yang J.S., Kang S.S., Im J., Yun C.H., Kim D.W., Lee K., Chung D.K., Ju H.R., Han S.H. (2009) Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids. Int. Immunopharmacol. 9(1), 127–133. https://doi.org/10.1016/j.intimp.2008.10.014
  139. Fischer W. (1988) Physiology of lipoteichoic acids in bacteria. Adv. Microb. Physiol. 29, 233–302. https://doi.org/10.1016/s0065-2911(08)60349-5
  140. Fischer W. (1990) Bacterial phosphoglycolipids and lipoteichoic acids. In: Handbook of Lipid Research. Ed. Kates M. New York: Plenum Press, V. 6. pp. 123–234.
  141. Fischer W. (1994) Lipoteichoic acid and lipids in the membrane of Staphylococcus aureus. Med. Microbiol. Immunol. 183(2), 61–76. https://doi.org/10.1007/BF00277157
  142. Glaser L., Lindsay B. (1974) The synthesis of lipoteichoic acid carrier. Biochem. Biophys. Res. Commun. 59(3), 1131–1136. https://doi.org/10.1016/s0006-291x(74)80096-3
  143. Koch H.U., Haas R., Fischer W. (1984) The role of lipoteichoic acid biosynthesis in membrane lipid metabolism of growing Staphylococcus aureus. Eur. J. Biochem. 138(2), 357–363. https://doi.org/0.1111/j.1432-1033.1984.tb07923.x
  144. Koch H.U., Taron D.J., Childs W.C. III, Neuhaus F.C. (1983) Biosynthesis of D-alanyl-lipoteichoic acid: role of diglyceride kinase in the synthesis of phosphatidylglycerol for chain elongation. J. Bacteriol. 154(3), 1110–1116. https://doi.org/10.1128/jb.154.3.1110-1116.1983
  145. Gründling A., Schneewind O. (2007) Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J. Bacteriol. 189(6), 2521–2530. https://doi.org/10.1128/JB.01683-06
  146. Bhavsar A.P., Brown E.D. (2006) Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigm. Mol. Microbiol. 60(5), 1077–1090. https://doi.org/10.1111/j.1365-2958.2006.05169.x
  147. Damjanovic M., Kharat A.S., Eberhardt A., Tomasz A., Vollmer W. (2007) The essential tacF gene is responsible for the choline-dependent growth phenotype of Streptococcus pneumoniae. J. Bacteriol. 189(19), 7105–7111. https://doi.org/10.1128/JB.00681-07
  148. Ruiz N. (2008) Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc. Natl. Acad. Sci. USA. 105(40), 15553–15557. https://doi.org/10.1073/pnas.0808352105
  149. Jerga A., Lu Y.J., Schujman G.E., de Mendoza D., Rock C.O. (2007) Identification of a soluble diacylglycerol kinase required for lipoteichoic acid production in Bacillus subtilis. J. Biol. Chem. 282(30), 21738–21745. https://doi.org/10.1074/jbc.M703536200
  150. Kiriukhin M.Y., Debabov D.V., Shinabarger D.L., Neuhaus F.C. (2001) Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase. J. Bacteriol. 183(11), 3506–3514. https://doi.org/10.1128/JB.183.11.3506-3514.2001
  151. Doran K.S., Engelson E.J., Khosravi A., Maisey H.C., Fedtke I., Equils O., Michelsen K.S., Arditi M., Peschel A., Nizet V. (2005) Blood-brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. J. Clin. Invest. 115(9), 2499–2507. https://doi.org/10.1172/JCI23829
  152. Fedtke I., Mader D., Kohler T., Moll H., Nicholson G., Biswas R., Henseler K., Götz F., Zähringer U., Peschel A. (2007) A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol. Microbiol. 65(4), 1078–1091. https://doi.org/10.1111/j.1365-2958.2007.05854.x
  153. Richter S.G., Elli D., Kim H.K., Hendrickx A.P., Sorg J.A., Schneewind O., Missiakas D. (2013) Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria. Proc. Natl. Acad. Sci USA. 110(9), 3531–3536. https://doi.org/10.1073/pnas.1217337110
  154. Ton-That H., Liu G., Mazmanian S.K., Faull K.F., Schneewind O. (1999) Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc. Natl. Acad. Sci. USA. 96(22), 12424–12429. https://doi.org/10.1073/pnas.96.22.12424
  155. Paganelli F., van de Kamer T., Brouwer E.C., Leavis H.L., Woodford N., Bonten M.J., Willems R.J., Hendrickx A.P. (2017) Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium. Int. J. Antimicrob. Agents. 49(3), 355–363. https://doi.org/10.1016/j.ijantimicag.2016.12.002
  156. Wattam A.R., Abraham D., Dalay O., Disz T.L., Driscoll T., Gabbard J.L., Gillespie J., Gough R., Hix D., Kenyon R., Machi D., Mao C., Nordberg E.K., Olson R., Overbeek R., Pusch G.D., Shukla M., Schulman J., Stevens R.L., Sullivan D.E., Vonstein V., Warren A., Will R. Wilson M.J., Yoo H.S., Zhang C., Zhang Y., Sobral B.W. (2014) PATRIC, the bacterial bioinformatics database and analysis resource. Nucl. Acids Res. 42 (Database issue), D581–591. https://doi.org/10.1093/nar/gkt1099
  157. Kelley L.A., Mezulis S., Yates C.M., Wass M.N., Sternberg M.J. (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
  158. Hendrickx A.P., Top J., Bayjanov J.R., Kemperman H., Rogers M.R., Paganelli F.L., Bonten M.J., Willems R.J. (2015) Antibiotic-driven dysbiosis mediates intraluminal agglutination and alternative segregation of Enterococcus faecium from the intestinal epithelium. mBio. 6(6), e01346-15. https://doi.org/10.1128/mBio.01346-15
  159. Sabnis A., Edwards A.M. (2023) Lipopolysaccharide as an antibiotic target. Biochim. Biophys. Acta Mol. Cell Res. 1870(7), 119507. https://doi.org/10.1016/j.bbamcr.2023.119507
  160. Whitfield C., Trent M.S. (2014) Biosynthesis and export of bacterial lipopolysaccharides. Annu. Rev. Biochem. 83, 99–128. https://doi.org/10.1146/annurev-biochem-060713-035600
  161. Parker C.T., Pradel E., Schnaitman C.A. (1992) Identification and sequences of the lipopolysaccharide core biosynthetic genes rfaQ, rfaP, and rfaG of Escherichia coli K12. J. Bacteriol. 174(3), 930–934. https://doi.org/10.1128/jb.174.3.930-934.1992
  162. Takeuchi Y., Nikaido H. (1981) Persistence of segregated phospholipid domains in phospholipid–lipopolysaccharide mixed bilayers: studies with spin-labeled phospholipids. Biochemistry. 20(3), 523–529. https://doi.org/10.1021/bi00506a013
  163. Delucia A.M., Six D.A., Caughlan R.E., Gee P., Hunt I., Lam J.S., Dean C.R. (2011) Lipopolysaccharide (LPS) inner-core phosphates are required for complete LPS synthesis and transport to the outer membrane in Pseudomonas aeruginosa PAO1. mBio. 2(4), e00142-11. https://doi.org/10.1128/mBio.00142-11
  164. Srinivas N., Jetter P., Ueberbacher B.J., Werneburg M., Zerbe K., Steinmann J., Van der Meijden B., Bernardini F., Lederer A., Dias R.L., Misson P.E., Henze H., Zumbrunn J., Gombert F.O., Obrecht D., Hunziker P., Schauer S., Ziegler U., Käch A., Eberl L., Riedel K., DeMarco S.J., Robinson J.A. (2010) Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science. 327(5968), 1010–1013. https://doi.org/10.1126/science.1182749
  165. Moura E.C.C.M., Baeta T., Romanelli A., Laguri C., Martorana A.M., Erba E., Simorre J.P., Sperandeo P., Polissi A. (2020) Thanatin impairs lipopolysaccharide transport complex assembly by targeting LptC-LptA interaction and decreasing LptA stability. Front. Microbiol. 11, 909. https://doi.org/10.3389/fmicb.2020.00909
  166. Raetz C.R., Whitfield C. (2002) Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700. https://doi.org/10.1146/annurev.biochem.71.110601.135414
  167. Sperandeo P., Martorana A.M., Zaccaria M., Polissi A. (2023).Targeting the LPS export pathway for the development of novel therapeutics. Biochim. Biophys. Acta Mol. Cell Res. 1870(2), 119406. https://doi.org/10.1016/j.bbamcr.2022.119406
  168. Onishi H.R., Pelak B.A., Gerckens L.S., Silver L.L., Kahan F.M., Chen M.H., Patchett A.A., Galloway S.M., Hyland S.A., Anderson M.S., Raetz C.R. (1996) Antibacterial agents that inhibit lipid A biosynthesis. Science. 274(5289), 980–982. https://doi.org/10.1126/science.274.5289.980
  169. Zhou P., Barb A. (2008) Mechanism and inhibition of LpxC: a nessential zinc-dependent deacetylase of bacterial lipid a synthesis. Curr. Pharm. Biotechnol. 9(1), 9–15. https://doi.org/10.2174/138920108783497668
  170. Jenkins R.J., Dotson G.D. (2012) Dual targeting antibacterial peptide inhibitor of early lipid a biosynthesis. ACS Chem. Biol. 7(7), 1170–1177. https://doi.org/10.1021/cb300094a
  171. Huseby D.L., Cao S., Zamaratski E., Sooriyaarachchi S., Ahmad S., Bergfors T., Krasnova L., Pelss J., Ikaunieks M., Loza E., Katkevics M., Bobileva O., Cirule H., Gukalova B., Grinberga S., Backlund M., Simoff I., Leber A.T., Berruga-Fernández T., Antonov D., Konda V.R., Lindström S., Olanders G., Brandt P., Baranczewski P., Vingsbo Lundberg C., Liepinsh E., Suna E., Jones T.A., Mowbray S.L., Hughes D., Karlén A. (2024) Antibiotic class with potent in vivo activity targeting lipopolysaccharide synthesis in Gram-negative bacteria. Proc. Natl. Acad. Sci. USA. 121(15), e2317274121. https://doi.org/10.1073/pnas.2317274121
  172. Birck M.R., Holler T.P., Woodard R.W. (2000) Identification of a slow tight-binding inhibitor of 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase J. Am. Chem. Soc. 122(38), 9334–9335. https://doi.org/10.1021/ja002142z
  173. Zampaloni C., Mattei P., Bleicher K., Winther L., Thäte C., Bucher C., Adam J.M., Alanine A., Amrein K.E., Baidin V., Bieniossek C., Bissantz C., Boess F., Cantrill C., Clairfeuille T., Dey F., Di Giorgio P., du Castel P., Dylus D., Dzygiel P., Felici A., García-Alcalde F., Haldimann A., Leipner M., Leyn S., Louvel S., Misson P., Osterman A., Pahil K., Rigo S., Schäublin A., Scharf S., Schmitz P., Stoll T., Trauner A., Zoffmann S., Kahne D., Young J.A.T., Lobritz M.A., Bradley K.A. (2024) A novel antibiotic class targeting the lipopolysaccharide transporter. Nature. 625(7995), 566–571. https://doi.org/10.1038/s41586-023-06873-0
  174. Pahil K.S., Gilman M.S.A., Baidin V., Clairfeuille T., Mattei P., Bieniossek C., Dey F., Muri D., Baettig R., Lobritz M., Bradley K., Kruse A.C., Kahne D. (2024) A new antibiotic traps lipopolysaccharide in its intermembrane transporter. Nature. 625(7995), 572–577. https://doi.org/10.1038/s41586-023-06799-7
  175. Tang X., Chang S., Luo Q., Zhang Z., Qiao W., Xu C., Zhang C., Niu Y., Yang W., Wang T., Zhang Z., Zhu X., Wei X., Dong C., Zhang X., Dong H. (2019) Cryo-EM structures of lipopolysaccharide transporter LptB2FGC in lipopolysaccharide or AMP-PNP-bound states reveal its transport mechanism. Nat. Commun. 10(1), 4175. https://doi.org/10.1038/s41467-019-11977-1
  176. Romano K.P., Hung D.T. (2023) Targeting LPS biosynthesis and transport in gram-negative bacteria in the era of multi-drug resistance. Biochim. Biophys. Acta Mol. Cell. Res. 1870(3), 119407. https://doi.org/10.1016/j.bbamcr.2022.119407
  177. Mohapatra S.S., Dwibedy S.K., Padhy I. (2021) Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J. Biosci. 46(3), 85. https://doi.org/10.1007/s12038-021-00209-8
  178. Khadka N.K., Aryal C.M., Pan J. (2018) Lipopolysaccharide-dependent membrane permeation and lipid clustering caused by cyclic lipopeptide colistin. ACS Omega. 3(12), 17828–17834. https://doi.org/10.1021/acsomega.8b02260
  179. Garcia-Quintanilla M., Caro-Vega J.M., Pulido M.R., Moreno-Martinez P., Pachon J., McConnell M.J. (2016) Inhibition of Lpx C increases antibiotic susceptibility in Acinetobacter baumannii. Antimicrob. Agents Chemother. 60(8), 5076–5079. https://doi.org/10.1128/AAC.00407-16
  180. Sabnis A., Hagart K.L., Klöckner A., Becce M., Evans L.E., Furniss R.C.D., Mavridou D.A., Murphy R., Stevens M.M., Davies J.C., Larrouy-Maumus G.J., Clarke T.B., Edwards A.M. (2021). Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. eLife. 10, e65836. https://doi.org/10.7554/eLife.65836
  181. Haltia T., Freire E. (1995) Forces and factors that contribute to the structural stability of membrane proteins. Biochim. Biophys. Acta. 1241(2), 295–322. https://doi.org/10.1016/0304-4157(94)00161-6
  182. Koebnik R., Locher K.P., van Gelder P. (2000) Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol. Microbiol. 37(2), 239–253. https://doi.org/10.1046/j.1365-2958.2000.01983.x
  183. Cowan S.W., Garavito R.M., Jansonius J.N., Jenkins J.A., Karlsson R., König N., Pai E.F., Pauptit R.A., Rizkallah P.J., Rosenbusch J.P., Rummel G., Schirmer T. (1995) The structure of OmpF porin in a tetragonal crystal form. Structure. 3(10), 1041–1050. https://doi.org/10.1016/s0969-2126(01)00240-4
  184. Acosta-Gutiérrez S., Bodrenko I., Scorciapino M.A., Ceccarelli M. (2016) Macroscopic electric field inside water-filled biological nanopores. Phys. Chem. Chem. Phys. 18(13), 8855–8864. https://doi.org/10.1039/C5CP07902K
  185. Im W., Roux B. (2002) Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J. Mol. Biol. 322(4), 851–869. https://doi.org/10.1016/s0022-2836(02)00778-7
  186. Ghai I, Ghai S. (2017) Exploring bacterial outer membrane barrier to combat bad bugs. Infect. Drug Resist. 10, 261–273. https://doi.org/10.2147/IDR.S144299
  187. Prajapati J.D., Kleinekathöfer U., Winterhalter M. (2021). How to enter a bacterium: bacterial porins and the permeation of antibiotics. Chem. Rev. 121, 5158–5192. https://doi.org/10.1021/acs.chemrev.0c01213
  188. Новикова О.Д., Соловьева Т.Ф. (2009) Порообразующие белки наружной мембраны некоторых грамотрицательных бактерий. Структура и свойства. Биол. Мембраны. 26(1), 6‒20.
  189. Yoshimura F., Nikaido H. (1985) Diffusion of beta-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob. Agents Chemother. 27(1), 84–92. https://doi.org/10.1128/AAC.27.1.84
  190. Pagès J.M., James C.E., Winterhalter M. (2008) The porin and the permeating antibiotic: a selective diffusion barrier in gram-negative bacteria. Nat. Rev. Microbiol. 6(12), 893–903. https://doi.org/10.1038/nrmicro1994
  191. Ruggiu F., Yang S., Simmons R.L., Casarez A., Jones A.K., Li C., Jansen J.M., Moser H.E., Dean C.R., Reck F., Mika L. (2019) Size matters and how you measure it: a gram-negative antibacterial example exceeding typical molecular weight limits. ACS Infect. 5, 1688–1692. https://doi.org/10.1021/acsinfecdis.9b00256
  192. Choi U., Lee C.R. (2019) Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front. Microbiol. 10, 953. https://doi.org/10.3389/fmicb.2019.00953
  193. James C.E., Mahendran K.R., Molitor A., Bolla J.M., Bessonov A.N., Winterhalter M., Pagès J.M. (2009) How beta-lactam antibiotics enter bacteria: a dialogue with the porins. PLoS One. 4(5), e5453. https://doi.org/10.1371/journal.pone.0005453
  194. Acosta-Gutiérrez S., Ferrara L., Pathania M., Masi M., Wang J., Bodrenko I., Zahn M., Winterhalter M., Stavenger R.A., Pagès J.M., Naismith J.H., van den Berg B., Page M.G.P., Ceccarelli M. (2018) Getting drugs into gram-negative bacteria: rational rules for permeation through general porins. ACS Infect. Dis. 4(10), 1487–1498. https://doi.org/10.1021/acsinfecdis.8b00108
  195. Ziervogel B.K., Roux B. (2013) The binding of antibiotics in OmpF porin. Structure. 21(1), 76–87. https://doi.org/10.1016/j.str.2012.10.014
  196. Sugawara E., Kojima S., Nikaido H. (2016) Klebsiella pneumoniae major porins OmpK35 and OmpK36 allow more efficient diffusion of β-lactams than their Escherichia coli homologs OmpF and OmpC. J. Bacteriol. 198(23), 3200–3208. https://doi.org/10.1128/JB.00590-16
  197. Moya-Torres A., Mulvey M.R., Kumar A., Oresnik I.J., Brassinga A.K.C. (2014) The lack of OmpF, but not OmpC, contributes to increased antibiotic resistance in Serratia marcescens. Microbiology (Reading). 160(9), 1882–1892. https://doi.org/10.1099/mic.0.081166-0
  198. Okamoto K., Gotoh N., Nishino T. (2001) Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: penem resistance mechanisms and their interplay. Antimicrob. Agents Chemother. 45(7), 1964–1971. https://doi.org/10.1128/AAC.45.7.1964-1971.2001
  199. Bornet C., Davin-Regli A., Bosi C., Pages J.M., Bollet C. (2000) Imipenem resistance of Enterobacter aerogenes mediated by outer membrane permeability. J. Clin. Microbiol. 38(3), 1048–1052. https://doi.org/10.1128/JCM.38.3.1048-1052.2000
  200. Mortimer P.G., Piddock L.J. (1993) The accumulation of five antibacterial agents in porin-deficient mutants of Escherichia coli. J. Antimicrob. Chemother. 32(2), 195–213. https://doi.org/10.1093/jac/32.2.195
  201. Vergalli J., Atzori A., Pajovic J., Dumont E., Malloci G., Masi M., Vargiu A.V., Winterhalter M., Réfrégiers M., Ruggerone P., Pagès J.M. (2020) The challenge of intracellular antibiotic accumulation, a function of fluoroquinolone influx versus bacterial efflux. Commun. Biol. 3(1), 198. https://doi.org/10.1038/s42003-020-0929-x
  202. Gauba A., Rahman K.M. (2023) Evaluation of antibiotic resistance mechanisms in gram-negative bacteria. Antibiotics (Basel). 12(11), 1590. https://doi.org/10.3390/antibiotics12111590
  203. Lou H., Chen M., Black S.S., Bushell S.R., Ceccarelli M., Mach T., Beis K., Low A.S., Bamford V.A., Booth I.R., Bayley H., Naismith J.H. (2011) Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multidrug resistant E. coli. PLoS One. 6(10), e25825. https://doi.org/10.1371/journal.pone.0025825
  204. Bredin J., Saint N., Malléa M., Dé E., Molle G., Pagès J.M., Simonet V. (2002) Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop 3 region. Biochem. J. 363(3), 521–528. https://doi.org/10.1042/0264-6021:3630521
  205. Cama J., Henney A.M., Winterhalter M. (2019) Breaching the barrier: quantifying antibiotic permeability across gram-negative bacterial membranes. J. Mol. Biol. 431(18), 3531–3546. https://doi.org/10.1016/j.jmb.2019.03.031
  206. Mahendran K.R., Hajjar E., Mach T., Lovelle M., Kumar A., Sousa I., Spiga E., Weingart H., Gameiro P., Winterhalter M., Ceccarelli M. (2010) Molecular basis of enrofloxacin translocation through OmpF, an outer membrane channel of Escherichia coli – When binding does not imply translocation. J. Phys. Chem. B. 114(15), 5170–5179. https://doi.org/10.1021/jp911485k
  207. Mach T., Neves P., Spiga E., Weingart H., Winterhalter M., Ruggerone P., Ceccarelli M., Gameiro P. (2008) Facilitated permeation of antibiotics across membrane channels - Interaction of the quinolone moxifloxacin with the OmpF channel. J. Am. Chem. Soc. 130(40), 13301–13309. https://doi.org/10.1021/ja803188c
  208. Bajaj H., Acosta-Gutierrez S., Bodrenko I., Malloci G., Scorciapino M.A., Winterhalter M., Ceccarelli M. (2017) Bacterial outer membrane porins as electrostatic nanosieves: exploring transport rules of small polar molecules. ACS Nano. 11(6), 5465–5473. https://doi.org/10.1021/acsnano.6b08613
  209. Danelon C., Nestorovich E.M., Winterhalter M., Ceccarelli M., Bezrukov S.M. (2006) Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation. Biophys. J. 90(5), 1617–1627. https://doi.org/10.1529/biophysj.105.075192
  210. Чистюлин Д.К., Зелепуга Е.А., Новиков В.Л., Баланева Н.Н., Глазунов В.П., Чингизова Е.А., Хоменко В.А., Новикова О.Д. (2024) Молекулярная модель транслокации норфлоксацина через канал OmpF порина Yersinia pseudotuberculosis Биол. Мембраны. 41(1), 36–57. https://doi.org/10.31857/S0233475524010032
  211. Delcour A.H. (2013) Electrophysiology of bacteria. Annu. Rev. Microbiol. 67, 179–197. https://doi.org/10.1146/annurev-micro-092412-155637
  212. Grewer C., Gameiro A., Mager T., Fendler K. (2013) Electrophysiological characterization of membrane transport proteins. Annu. Rev. Biophys. 42, 95–120. https://doi.org/10.1146/annurev-biophys-083012-130312
  213. Danilchanka O., Pavlenok M., Niederweis M. (2008) Role of porins for uptake of antibiotics by Mycobacterium smegmatis. Antimicrob. Agents Chemother. 52(9), 3127–3134. https://doi.org/10.1128/AAC.00239-08
  214. Simonet V., Malléa M., Pagès J.M. (2000) Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob. Agents Chemother. 44(2), 311–315. https://doi.org/10.1128/AAC.44.2.311-315.2000
  215. Dé E., Baslé A., Jaquinod M., Saint N., Malléa M., Molle G., Pagès J.M. (2001) A new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the major porin. Mol. Microbiol. 41(1), 189–198. https://doi.org/10.1046/j.1365-2958.2001.02501.x
  216. Gill M.J., Simjee S., Al-Hattawi K., Robertson B.D., Easmon C.S., Ison C.A. (1998) Gonococcal resistance to beta-lactams and tetracycline involves mutation in loop 3 of the porin encoded at the penB locus. Antimicrob. Agents Chemother. 42(11), 2799–2803. https://doi.org/10.1128/AAC.42.11.2799
  217. Huang W., Zhang Q., Li W., Chen Y., Shu C., Li Q., Zhou J., Ye C., Bai H., Sun W., Yang X., Ma Y. (2019) Anti-outer membrane vesicle antibodies increase antibiotic sensitivity of pan-drug-resistant Acinetobacter baumannii. Front. Microbiol. 10, 1379. https://doi.org/10.3389/fmicb.2019.01379
  218. Rafailidis P.I., Ioannidou E.N., Falagas M.E. (2007) Ampicillin/sulbactam: current status in severe bacterial infections. Drugs. 67(13), 1829–1849. https://doi.org/10.2165/00003495-200767130-00003

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Biosynthesis of peptidoglycan precursors in the cytoplasm, catalyzed by enzymes of the Mur family [26] (Creative Commons Attribution License, with modifications).

Жүктеу (46KB)
3. Fig. 2. Schematic diagram of the determination of murein ligase activity by scintillation close range assay (SPA) using polystyrene microspheres as a ligand support.

Жүктеу (24KB)
4. Fig. 3. Scheme of action of transglycosylase and transpeptidase.

Жүктеу (54KB)
5. Fig. 4. The principle of action of sortase A [113] (Creative Commons Attribution License, with modifications).

Жүктеу (41KB)
6. Fig. 5. The structure of teichoic and lipoteichoic acids and a schematic representation of their localization in the cell membrane.

Жүктеу (35KB)
7. Fig. 6. Biosynthesis of teichoic acid. TA is sequentially synthesized by a series of Tar enzymes on a bactoprenyl phosphate carrier on the inner surface of the cell membrane and transported to the outer surface where it cross-links to peptide glycan [132] (Creative Commons Attribution License, with modifications).

Жүктеу (43KB)
8. Fig. 7. Scheme of biosynthesis of lipoteichoic acid type I (LTA I), using Staphylococccus aureus as an example. a — The glycolipid anchor diglucosyldiacylglycerol (Glc2DAG) is synthesized from diacylglycerol (DAG) and uridine diphosphate glucose (UDP-Glc) by diglucosyldiacylglycerol synthase (YpfP) and transported to the outer side of the membrane by transferase LtaA, 1,3-diglycerophosphate (DGP) is cleaved from phosphatidylglycerol (PG) and attached to Glc2DAG, the polymerization is catalyzed by the enzyme LtaS. Elongation of the polymer leads to the release of DAG, the enzyme DgkB initiates its recycling. b — Alternative pathway of polymerization of the LTA main chain. Phosphatidylglycerol (PG) serves as an acceptor, and LtaS transferase is required to transfer DGP and polyglycerophosphate (PGP) to Glc2DAG as an acceptor.

Жүктеу (28KB)
9. Fig. 8. Lipopolysaccharides have different structural regions responsible for different functions.

Жүктеу (36KB)
10. Fig. 9. Theoretical model of the spatial structure of the OmpF porin from Y. pseudotuberculosis. a — Top view of the OmpF trimer; b — side view of the OmpF trimer. The localization of tryptophan (a) and tyrosine (b) residues is shown. Amino acid residues are shown in a spherical representation. The figure was created using the MOE program (https://www.chemcomp.com).

Жүктеу (42KB)
11. Fig. 10. Spatial organization of probable YpOmpF complexes with norfloxacin mono- and dihydrochloride. 3D structure of YpOmpF porin homotrimer, two subunits are shown as a molecular surface, one as a ribbon diagram, lipids and aqueous environment are removed for clarity. NfH+1 (a) and Nf2H+2 (b) molecules in two binding sites are shown in ball representation, in trans position in pink and blue, in cis position in yellow and green. Accordingly, the amino acid residues surrounding them are shown in rod representation. The callouts show 2D diagrams of intermolecular interactions of NfH+1 (a) and Nf2H+2 (b) in both binding sites [210].

Жүктеу (70KB)

© Russian Academy of Sciences, 2025