Биопленки как предполагаемая базовая форма существования микроорганизмов: современные представления

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В обзоре анализируются современные сведения о процессах формирования микробных биопленок, как закрепленных на биотических и абиотических поверхностях, так и возникающих в результате автоагрегации и коагрегации в толще жидкости. Подробно описаны физико-химические явления, протекающие при распознавании клетками микроорганизмов поверхности раздела фаз. Детально описаны компоненты внеклеточного полимерного матрикса биопленок, регуляция их образования, структурное значение для архитектуры биопленок и защитная роль при воздействии биоцидов (в том числе антибиотиков) и прочих неблагоприятных факторов внешней среды. Рассмотрены подходы к управлению формированием микробных биопленок. Подвергнута анализу предложенная в литературе новая схема формирования микробных биопленок, включающая три этапа вместо пяти.

Полный текст

Доступ закрыт

Об авторах

В. К. Плакунов

Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук

Email: aegopodium102011@gmail.com

Институт микробиологии им. С.Н. Виноградского

Россия, 119071, Москва

М. В. Журина

Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук

Email: aegopodium102011@gmail.com

Институт микробиологии им. С.Н. Виноградского

Россия, 119071, Москва

С. В. Мартьянов

Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук

Email: aegopodium102011@gmail.com

Институт микробиологии им. С.Н. Виноградского

Россия, 119071, Москва

А. В. Ганнесен

Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук

Автор, ответственный за переписку.
Email: aegopodium102011@gmail.com

Институт микробиологии им. С.Н. Виноградского

Россия, 119071, Москва

Список литературы

  1. Журина М. В., Кострикина Н. А., Паршина Е. А., Стрелкова Е. А., Юсипович А. И., Максимов Г. В., Плакунов В. К. Визуализация внеклеточного полимерного матрикcа биопленок Chromobacterium violaceum с помощью микроскопических методов // Микробиология. 2013. T. 82. C. 502–509. https://doi.org/10.7868/s0026365613040162
  2. Zhurina M. V., Kostrikina N. A., Parshina E. Yu., Strelkova E. A., Yusipovich A. I., Maksimov G. V., Plakunov V. K. Visualization of the extracellular polymeric matrix of Chromobacterium violaceum biofilms by microscopic methods // Microbiology (Moscow). 2013. V. 82. P. 517–524. https://doi.org/10.1134/S0026261713040164
  3. Журина М. В., Ганнесен А. В., Мартьянов С. В., Тетенева Н. А., Штратников В. Ю., Плакунов В. К. Никлозамид как перспективный антибиопленочный агент // Микробиология. 2017. Т. 86. С. 439–447. https://doi.org/10.7868/S0026365617040152
  4. Zhurina M. V., Gannesen A. V., Mart’yanov S.V., Teteneva N. A., Shtratnikov V. Yu., Plakunov V. K. Niclosamide as a promising antibiofilm agent // Microbiology (Moscow). 2017. V. 86. P. 455–462. https://doi.org/10.1134/S0026261717040154
  5. Журина М. В., Николаев Ю. А., Плакунов В. К. Роль внеклеточного полимерного матрикса в защитном эффекте при действии антибиотика азитромицина на Chromobacterium violaceum // Микробиология. 2019. Т. 88. С. 497–500. https://doi.org/10.1134/S0026365619040153
  6. Zhurina M. V., Nikolaev Yu.A., Plakunov V. K. Role of the extracellular polymer matrix in azithromycin protection of Chromobacterium violaceum biofilms // Microbiology (Moscow). 2019. V. 88. P. 275–281. https://doi.org/10.1134/S0026261719040155
  7. Журина М. В., Каллистова А. Ю., Панюшкина А. Е., Ганнесен А. В., Мартьянов С. В., Герасин В. А., Сивов Н. А., Тихомиров В. А., Плакунов В. К. Специфика формирования мультивидовых микробных биопленок на поверхности полиэтилена // Микробиология. 2020. Т. 89. С. 400–409. https://doi.org/10.31857/S0026365620040187
  8. Zhurina M. V., Kallistova A. Yu., Panyushkina A. E., Gannesen A. V., Mart’yanov S.V., Gerasin V. A., Sivov N. A., Tikhomirov V. A., Plakunov V. K. Specific features of formation of multispecies microbial biofilms on polyethylene surface // Microbiology (Moscow). 2020. V. 89. P. 396–404. https://doi.org/10.1134/S0026261720040165
  9. Журина М. В., Богданов К. И., Ганнесен А. В., Мартьянов С. В., Плакунов В. К. Микропластики – новая экологическая ниша в пластисфере для мультивидовых микробных биопленок // Микробиология. 2022. Т. 91. С. 131–149. https://doi.org/10.31857/S0026365622020148
  10. Zhurina M. V., Bogdanov K. I., Gannesen A. V., Mart’yanov S.V., Plakunov V. K. Microplastics as a new ecological niche for multispecies microbial biofilms within the plastisphere // Microbiology (Moscow). 2022. V. 91. P. 107–123. https://doi.org/10.1134/S0026261722020126
  11. Мартьянов С. В., Летаров А. В., Иванов П. А., Плакунов В. К. Стимуляция биосинтеза виолацеина в биопленках Chromobacterium violaceum под воздействием диметилсульфоксида // Микробиология. 2018. Т. 87. С. 325–329. https://doi.org/10.7868/S0026365618030102
  12. Mart’yanov S. V., Letarov A. V., Ivanov P. A., Plakunov V. K. Stimulation of violacein biosynthesis in Chromobacterium violaceum biofilms in the presence of dimethyl sulfoxide // Microbiology (Moscow). 2018. V. 87. P. 437–440. https://doi.org/10.1134/S0026261718030050
  13. Ножевникова А. Н., Бочкова Е. А., Плакунов В. К. Мультивидовые биопленки в экологии, медицине и биотехнологии // Микробиология. 2015. Т. 84. С. 623–644. https://doi.org/10.7868/S0026365615060117
  14. Nozhevnikova A. N., Botchkova E. A., Plakunov V. K. Multispecies biofilms in ecology, medicine, and biotechnology // Microbiology (Moscow). 2015. V. 84. P. 731–750. https://doi.org/10.1134/S0026261715060107
  15. Пиневич А. В., Коженкова Е. В., Аверина С. Г. Биопленки и другие прокариотные консорциумы. СПб.: Химиздат, 2018. 263 с.
  16. Плакунов В. К., Мартьянов С. В., Тетенева Н. А., Журина М. В. Управление формированием микробных биопленок: анти- и пробиопленочные агенты (обзор) // Микробиология. 2017. Т. 86. С. 402–420. https://doi.org/10.7868/S0026365617040127
  17. Plakunov V. K., Mart’yanov S.V., Teteneva N. A., Zhurina M. V. Controlling of microbial biofilms formation: anti- and probiofilm agents, review // Microbiology (Moscow). 2017. V. 86. P. 423–438. https://doi.org/10.1134/ S0026261717040129
  18. Плакунов В. К., Журина М. В., Ганнесен А. В., Мартьянов С. В., Николаев Ю. А. Антибиопленочные агенты: неоднозначность терминологии и стратегия поиска // Микробиология. 2019а. Т. 88. С. 705–709. https://doi.org/10.1134/S0026365619060144
  19. Plakunov V. K., Zhurina M. V., Gannesen A. V., Mart’yanov S.V., Nikolaev Yu. A. Antibiofilm agents: therminological ambiguity and strategy for search // Microbiology (Moscow). 2019a. V. 88. P. 747–750. https://doi.org/10.1134/S0026261719060146
  20. Плакунов В. К., Николаев Ю. А., Ганнесен А. В., Чемаева Д. С., Журина М. В. Новый подход к выявлению защитной роли Esсherichia coli в отношении грамположительных бактерий при действии антибиотиков на бинарные биопленки // Микробиология. 2019б. Т. 88. С. 288–296. https://doi.org/10.1134/S0026365619030091
  21. Plakunov V. K., Nikolaev Yu.A., Gannesen A. V., Chemaeva D. S., Zhurina M. V. A new approach to detection of the protective effect of Escherichia coli on Gram-positive bacteria in binary biofilms in the presence of antibiotics // Microbiology (Moscow). 2019b. V. 88. P. 275–281. https://doi.org/10.1134/S0026261719030093
  22. Плакунов В. К., Ганнесен А. В., Мартьянов С. В., Журина М. В. Биокоррозия синтетических пластмасс: механизмы деградации и способы защиты // Микробиология. 2020. Т. 89. С. 631–645. https://doi.org/10.31857/S0026365620060142
  23. Plakunov V. K., Gannesen A. V., Mart’yanov S.V., Zhurina M. V. Biocorrosion of synthetic plastics: degradation mechanisms and methods of protection // Microbiology (Moscow). 2020. V. 89. P. 647–659. https://doi.org/10.1134/S0026261720060144
  24. Стрелкова Е. А., Позднякова Н. В., Журина М. В., Плакунов В. К., Беляев С. С. Роль внеклеточного полимерного матрикса в устойчивости бактериальных биопленок к экстремальным факторам среды // Микробиология. 2013. Т. 82. С. 131–138. https://doi.org/10.7868/S0026365613020158
  25. Strelkova E. A., Pozdnyakova N. V., Zhurina M. V., Plakunov V. K., Belyaev S. S. Role of the extracellular polymer matrix in resistance of bacterial biofilms to extreme environmental factors // Microbiology (Moscow). 2013. V. 82. P. 119–125. https://doi.org/10.1134/S0026261712020142
  26. Abdelkader J., Alelyani M., Alashban Y., Alghamdi S. A., Bakkour Y. Modification of dispersin B with cyclodextrin-ciprofloxacin derivatives for treating staphylococcal // Molecules. 2023. V. 28. Art. 5311. https://doi.org/10.3390/molecules28145311
  27. Abreu-Pereira C.A., Klein M. I., Lobo C. I.V., Gorayb Pereira A. L., Jordão C. C., Pavarina A. C. DNase enhances photodynamic therapy against fluconazole-resistant Candida albicans biofilms // Oral Dis. 2023. V. 29. P. 1855−1867. https://doi.org/10.1111/odi.14149
  28. Aherne O., Mørch M., Ortiz R., Shannon O., Davies J. R. A novel multiplex fluorescent-labeling method for the visualization of mixed-species biofilms in vitro // Microbiol. Spectr. 2024. V. 12. Art. e0025324. https://doi.org/10.1128/spectrum.00253-24
  29. Al-Otaibi N.S., Bergeron J. R.C. Structure and assembly of the bacterial flagellum // Subcell. Biochem. 2022. V. 99. P. 395–420. https://doi.org/10.1007/978-3-031-00793-4_13
  30. Alshatwi A. A., Subash-Babu P., Antonisamy P. Violacein induces apoptosis in human breast cancer cells through up regulation of BAX, p53 and down regulation of MDM2 // Exp. Toxicol. Pathol. 2016. V. 68. P. 89–97. https://doi.org/10.1016/j.etp.2015.10.002
  31. Anantharaman S., Guercio D., Mendoza A. G., Withorn J. M., Boon E. M. Negative regulation of biofilm formation by nitric oxide sensing proteins // Biochem. Soc. Trans. 2023. V. 51. P. 1447−1458. https://doi.org/10.1042/BST20220845
  32. Angelin J. Kavitha M. Exopolysaccharides from probiotic bacteria and their health potential // Int. J. Biol. Macromol. 2020. V. 162. P. 853–865. https://doi.org/10.1016/j.ijbiomac.2020.06.190
  33. Armbruster C. R., Lee C. K., Parker-Gilham J., de Anda J., Xia A., Zhao K., Murakami K., Tseng B. S., Hoffman L. R., Jin F., Harwood C. S., Wong G. C., Parsek M. R. Heterogeneity in surface sensing suggests a division of labor in Pseudomonas aeruginosa populations // eLife. 2019. V. 8. Art. e45084. https://doi.org/10.7554/eLife.45084
  34. Armitage J. P., Berry R. M. Assembly and dynamics of the bacterial flagellum // 2020. V. 74. P. 181–200. https://doi.org/10.1146 /annurev-micro-090816-093411
  35. Arnaouteli S., Bamford N. C., Stanley-Wall N.R., Kovács Á. T. Bacillus subtilis biofilm formation and social interactions // Nat. Rev. Microbiol. 2021. V. 19. P. 600−614. https://doi.org/10.1038/s41579-021-00540-9
  36. Avbelj M., Zupan J., Raspor P. Quorum-sensing in yeast and its potential in wine making // Appl. Microbiol. Biotechnol. 2016. V. 100. P. 7841–7852. https://doi.org/10.1007/s00253-016-7758-3
  37. Balducci E., Papi F., Capialbi D. E., Del Bino L. Polysaccharides’ structures and functions in biofilm architecture of antimicrobial-resistant (AMR) pathogens // Int. J. Mol. Sci. 2023. V. 24. Art. 4030. https://doi.org/10.3390/ijms24044030
  38. Baltz R. H. Antibiotic discovery from actinomycetes: will a renaissance follow the decline and fall? // SIM News. 2005. V. 55. P. 186–196. https://www.researchgate.net/publication/284626065
  39. Batoni G., Maisetta G., Esin S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria // Biochim. Biophys. Acta. 2016. V. 1858. P. 1044–1060. https://doi.org/10.1016/j.bbamem.2015.10.013
  40. Bernardi S., Anderson A., Macchiarelli G., Hellwig E., Cieplik F., Vach K., Al-Ahmad A. Subinhibitory antibiotic concentrations enhance biofilm formation of clinical Enterococcus faecalis isolates // Antibiotics (Basel). 2021. V. 10. Art. 874. https://doi.org/10.3390/antibiotics10070874
  41. Berne C., Ellison C. K., Ducret A., Brun Y. V. Bacterial adhesion at the single-cell level // Nature Rev. Microbiol. 2018a. V. 16. P. 616–627. https://doi.org/10.1038/s41579-018-0057-5
  42. Berne C., Ellison C. K., Agarwal R., Severin G. B., Fiebig A., Morton R. I., Waters C. M., Brun Y. V. Feedback regulation of Caulobacter crescentus holdfast synthesis by flagellum assembly via the holdfast inhibitor HfiA // Mol. Microbiol. 2018b. V. 110. P. 219–238. https://doi.org/10.1111/mmi.14099
  43. Besharova O., Suchanek V. M., Hartmann R., Drescher K., Sourjik V. Diversification of gene expression during formation of static submerged biofilms by Escherichia coli // Front. Microbiol. 2016. V. 7. Art 1568. https://doi.org/10.3389/fmicb.2016.01568
  44. Bhattacharya S. P., Karmakar S., Acharya K., Bhattacharya A. Quorum sensing inhibition and antibiofilm action of triterpenoids: an updated insight // Fitoterapia. 2023. V. 167. Art. 105508. https://doi.org/10.1016/j.fitote.2023.105508
  45. Bilsland E., Tavella T. A., Krogh R., Stokes J. E., Roberts A., Ajioka J., Spring D. R., Andricopulo A. D., Costa F. T.M., Oliver S. G. Antiplasmodial and trypanocidal activity of violacein and deoxyviolacein produced from synthetic operons // BMC Biotechnol. 2018. V. 18. Art. 22. https://doi.org/10.1186/s12896-018-0428-z
  46. Bjarnsholt T., Alhede M., Alhede M., Eickhardt-Sørensen S.R., Moser C., Kühl M., Jensen P. O., Høiby N. The in vivo biofilm // Trend. Microbiol. 2013. V. 21. P. 466–474. https://doi.org/10.1016/j.tim.2013.06.002
  47. Boinovich L. B., Kaminsky V. V., Domantovsky A. G., Emelyanenko K. A., Aleshkin A. V., Zulkarneev E. R., Kiseleva I. A., Emelyanenko A. M. Bactericidal activity of superhydrophobic and superhydrophilic copper in bacterial dispersions // Langmuir. 2019. V. 35. P. 2832–2841. https://doi.org/10.1021/acs.langmuir.8b03817
  48. Boldrin F., Provvedi R., Cioetto Mazzabò L., Segafreddo G., Manganelli R. Tolerance and persistence to drugs: a main challenge in the fight against Mycobacterium tuberculosis // Front. Microbiol. 2020. V. 11. Art. 1924. https://doi.org/10.3389/fmicb.2020.01924
  49. Bottagisio M., Soggiu A., Piras C., Bidossi A., Greco V., Pieroni L., Bonizzi L., Roncada P., Lovati A. B. Proteomic analysis reveals a biofilm-like behavior of planktonic aggregates of Staphylococcus epidermidis grown under environmental pressure/stress // Front. Microbiol. 2019. V. 10. Art. 1909. https://doi.org/10.3389/fmicb.2019.01909
  50. Boyd C. D., O’Toole G. A. Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems // Ann. Rev. Cell Develop. Biol. 2012. V. 28. P. 439–462. https://doi.org/10.1146/annurev-cellbio-101011-155705
  51. Brameyer S., Heermann R. Specificity of signal-binding via non-AHL LuxR-type receptors // PLoS One. 2015. V. 10. Art. e0124093. https://doi.org/10.1371/journal.pone.0124093
  52. Brown S., Santa Maria J. P. Jr., Walker S. Wall teichoic acids of gram-positive bacteria // Annu. Rev. Microbiol. 2013. V. 67. P. 313–336. https://doi.org/10.1146/annurev-micro-092412-155620
  53. Braun F., Thomalla L., van der Does C., Quax T. E.F., Allers T., Kaever V., Albers S. V. Cyclic nucleotides in archaea: cyclic di-AMP in the archaeon Haloferax volcanii and its putative role // Microbiology Open. 2019. V. 8. Art. e00829. https://doi.org/10.1002/mbo3.829
  54. Cai Y.-M. Non-surface attached bacterial aggregates: a ubiquitous third lifestyle // Front. Microbiol. 2020. V. 11. Art. 557035. https://doi.org/10.3389/fmicb.2020.557035
  55. Campoccia D., Montanaro L., Arciola C. R. Extracellular DNA (eDNA). A major ubiquitous element of the bacterial biofilm architecture // Int. J. Mol. Sci. 2021. V. 22. Art. 9100. https://doi.org/10.3390/ijms22169100
  56. Cancino-Diaz M.E., Guerrero-Barajas C., Betanzos-Cabrera G., Cancino-Diaz J. C. Nucleotides as bacterial second messengers // Molecules. 2023. V. 28. Art. 7996. https://doi.org/10.3390/molecules28247996
  57. Casadidio C., Mayol L., Biondi M., Scuri S., Cortese M., Hennink WE., Vermonden T., De Rosa G., Di Martino P., Censi R. Anionic polysaccharides for stabilization and sustained release of antimicrobial peptides // Int. J. Pharm. 2023. V. 636. Art. 122798. https://doi.org/10.1016/j.ijpharm.2023.122798
  58. Charani E., Holmes A. Antibiotic stewardship-twenty years in the making // Antibiotics (Basel). 2019. V. 8. Art. 7. https://doi.org/10.3390/antibiotics8010007
  59. Chen H., Fujita M., Feng Q., Clardy J., Fink G. R. Tyrosol is a quorum-sensing molecule in Candida albicans // Proc. Natl. Acad. Sci. USA. 2004. V. 101. P. 5048–5052. https://doi.org/10.1073/pnas.0401416101
  60. Cho E., Hwang J. Y., Park J. S., Oh D., Oh D. C., Park H. G., Shin J., Oh K. B. Inhibition of Streptococcus mutans adhesion and biofilm formation with small-molecule inhibitors of sortase A from Juniperus chinensis // J. Oral. Microbiol. 2022. V. 14. Art. 2088937. https://doi.org/10.1080/20002297.2022.2088937
  61. Choi H. M., Calvert C. R., Husain N., Huss D., Barsi J. C., Deverman B. E., Hunter R. C., Kato M., Lee S. M., Abelin A. C., Rosenthal A. Z., Akbari O. S., Li Y., Hay B. A., Sternberg P. W., Patterson P. H., Davidson E. H., Mazmanian S. K., Prober D. A., van de Rijn M., Leadbetter J. R., Newman D. K., Readhead C., Bronner M. E., Wold B., Lansford R., Sauka-Spengler T., Fraser S. E., Pierce N. A. Mapping a multiplexed zoo of mRNA expression // Development. 2016. V. 143. P. 3632–3637. https://doi.org/10.1242/dev.140137
  62. Chou S.-H., Guiliani N., Lee V. T., Römling U. (Eds.). Microbial cyclic di-nucleotide signaling. Springer Nature Switzerland AG. 2020. https://doi.org/10.1007/978-3-030-33308-9
  63. Cordero O. X., Datta M. S. Microbial interactions and community assembly at microscales // Curr. Opin. Microbiol. 2016. V. 31. P. 227–234. https://doi.org/10.1016/j.mib.2016.03.015
  64. Corno G., Coci M., Giardina M., Plechuk S., Campanile F., Stefani S. Antibiotics promote aggregation within aquatic bacterial communities // Front. Microbiol. 2014. V. 5. Art. 297. https://doi.org/10.3389/fmicb.2014.00297
  65. Corrigan R. M., Gründling A. Cyclic di-AMP: another second messenger enters the fray // Nature Revs. Microbiol. 2013. V. 11. P. 513–524. https://doi.org/10.1038/nrmicro3069
  66. Costerton J. W., Geesey G. G., Cheng K.-J. How bacteria stick // Scientific American. 1978. V. 238. P. 86–95. https://doi.org/10.1038/scientificamerican0178-86
  67. Costerton J. W. Overview of microbial biofilms // J. Ind. Microbiol. 1995. V. 15. P. 137–140. https://doi.org/10.1007/bf01569816
  68. Costerton J. W., Philip S. Stewart P. S., Greenberg E. P. Bacterial Biofilms: A common cause of persistent infections // Science. 1999. V. 284. P. 1318–1322. https://doi.org/10.1126/science.284.5418.1318
  69. Cramton S. E., Gerke C., Schnell N. F., Nichols W. W., Götz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation // Infect. Immun. 1999. V. 67. P. 5427–5433. https://doi.org/10.1128/iai.67.10.5427-5433.1999
  70. Demkina E. V., Ilicheva E. A., El-Registan G.I., Pankratov T. A., Yushina Y. K., Semenova A. A., Nikolaev Y. A. New approach to improving the efficiency of disinfectants against biofilms // Coatings. 2023. V. 13. Art. 582. https://doi.org/10.3390/coatings13030582
  71. Deter H. S., Hossain T., Butzin N. C. Antibiotic tolerance is associated with a broad and complex transcriptional response in E. coli // Sci. Rep. 2021. V. 11. Art. 6112. https://doi.org/10.1038/s41598-021-85509-7
  72. Dižová S., Bujdáková H. Properties and role of the quorum sensing molecule farnesol in relation to the yeast Candida albicans // Pharmazie. 2017. V. 72. P. 307–312. https://doi.org/10.1691/ph.2017.6174
  73. Dogsa I., Brloznik M., Stopar D., Mandic-Mulec I. Exopolymer diversity and the role of levan in Bacillus subtilis biofilms // PLoS One. 2013. V. 8. Art. e62044. https://doi.org/10.1371/journal.pone.0062044
  74. Dogsa I., Kostanjšek R., Stopar D. eDNA provides a scaffold for autoaggregation of B. subtilis in bacterioplankton suspension // Microorganisms. 2023. V. 11. P. 332. https://doi.org/10.3390/microorganisms11020332
  75. Donlan R. M. Biofilms: microbial life on surfaces // Emerg. Infect. Dis. 2002. V. 8. P. 881–890. https://doi.org/10.3201/eid0809.020063
  76. Eboigbodin K. E., Newton J. R.A., Routh A. F., Biggs C. A. Role of nonadsorbing polymers in bacterial aggregation // Langmuir. 2005. V. 21. P. 12315–12319. https://doi.org/10.1021/la051740u
  77. Emelyanenko A. M., Pytskii I. S., Kaminsky V. V., Chulkova E. V., Domantovsky A. G., Emelyanenko K. A., Sobolev V. D., Aleshkin A. V., Boinovich L. B. Superhydrophobic copper in biological liquids: Antibacterial activity and microbiologically induced or inhibited corrosion // Colloids Surf. B Biointerfaces. 2020. V. 185. Art. 110622. https://doi.org/10.1016/j.colsurfb.2019.110622
  78. Encinas N., Yang C.-Y., Geyer F., Kaltbeitzel A., Baumli P., Reinholz J., Mailänder V., Butt H. J., Vollmer D. Submicrometer-sized roughness suppresses bacteria adhesion // ACS Appl. Mater. Interfaces. 2020. V. 12. P. 21192−21200. https://doi.org/10.1021/acsami.9b22621
  79. Epler Barbercheck C. R., Bullitt E., Andersson M. Bacterial adhesion pili // Subcell. Biochem. 2018. V. 87. P. 1–18. https://doi.org/10.1007/978-981-10-7757-9_1
  80. Fischer J. T., Hossain S., Boon E. M. NosP modulates cyclic-di-GMP signaling in Legionella pneumophila // Biochemistry. 2019. V. 58. P. 4325−4334. https://doi.org/10.1021/acs.biochem.9b00618
  81. Flores-Valdez M.A., Peterson E. R., Aceves-Sánchez M.J., Baliga N. S., Morita Y. S., Sparks I. L., Saini D. K., Yadav R., Lang R., Mata-Espinosa D., León-Contreras J.C., Hernández-Pando R. Comparison of the transcriptome, lipidome, and c-di-GMP production between CGdeltaBCG1419c and BCG, with Mincle- and Myd88-dependent induction of proinflammatory cytokines in murine macrophages // Sci. Rep. 2024. V. 14. Art. 11898. https://doi.org/10.1038/s41598-024-61815-8
  82. Fong J. N.C., Yildiz F. H. Biofilm matrix proteins // Microbiol. Spectr. 2015. V. 3. Art. 10.1128/microbiolspec.MB-0004-2014. https://doi.org/10.1128/microbiolspec.MB-0004-2014
  83. Gannesen A. V., Zdorovenko E. L., Botchkova E. A., Hardouin J., Massier S., Kopitsyn D. S., Gorbachevskii M. V., Kadykova A. A., Shashkov A. S., Zhurina M. V., Netrusov A. I., Knirel Y. A., Plakunov V. K., Feuilloley M. G.J. Composition of the biofilm matrix of Cutibacterium acnes acneic strain RT5 // Front. Microbiol. 2019. V. 10 Art. 1284. https://doi.org/10.3389/fmicb.2019.01284
  84. Gannesen A. V., Ziganshin R. H., Zdorovenko E. L., Klimko A. I., Ianutsevich E. A., Danilova O. A., Tereshina V. M., Gorbachevskii M. V., Ovcharova M. A., Nevolina E. D., Martyanov S. V., Shashkov A. S., Dmitrenok A. S., Novikov A. A., Zhurina M. V., Botchkova E. A., Toukach P. V., Plakunov V. K. Epinephrine extensively changes the biofilm matrix composition in Micrococcus luteus C01 isolated from human skin // Front. Microbiol. 2022. V. 13. Art. 1003942. https://doi.org/10.3389/fmicb.2022.1003942
  85. Gannesen A. V., Schelkunov M. I., Ziganshin R. H., Ovcharova M. A., Sukhacheva M. V., Makarova N. E., Mart’yanov S.V., Loginova N. A., Mosolova A. M., Diuvenji E. V., Nevolina E. D., Plakunov.V.K. Proteomic and transcriptomic analyses of Cutibacterium acnes biofilms and planktonic cultures in presence of epinephrine // AIMS Microbiol. 2024. V. 10. P. 363−390. https://doi.org/ 10.3934/microbiol.2024019
  86. Gautam S., Mahapa A., Yeramala L, Gandhi A., Krishnan S, Kutti R. V., Chatterji D. Regulatory mechanisms of c-di-AMP synthase from Mycobacterium smegmatis revealed by a structure: function analysis // Protein Sci. 2023. V. 32. Art. e4568. https://doi.org/10.1002/pro.4568
  87. Gerardi D., Bernardi S., Bruni A., Falisi G., Botticelli G. Characterization and morphological methods for oral biofilm visualization: where are we nowadays? // AIMS Microbiol. 2024. V. 10. P. 391−414. https://doi.org/10.3934/microbiol.2024020
  88. Gillings M. R. Evolutionary consequences of antibiotic use for the resistome, mobilome, and microbial pangenome // Front. Microbiol. 2013. V. 4. Art. 4. https://doi.org/10.3389/fmicb.2013.00004
  89. Grandclement C., Tannieres M., Morera S., Dessaux Y., Faure D. D. Quorum quenching: role in nature and applied developments // FEMS Microbiol. Revs. 2016. V. 40 P. 86–116. https://doi.org/10.1093 /femsre/fuv038
  90. Grooters K. E., Ku J. C., Richter D. M., Krinock M. J., Minor A., Li P., Kim A., Sawyer R., Li Y. Strategies for combating antibiotic resistance in bacterial biofilms // Front. Cell. Infect. Microbiol. 2024. V. 14. Art. 1352273. https://doi.org/10.3389/fcimb.2024.1352273
  91. Gusnaniar N., van der Mei H. C., Qu W., Nuryastuti T., Hooymans J. M.M., Sjollema J., Busscher H. J. Physicochemistry of bacterial transmission versus adhesion // Adv. Colloid Interface Sci. 2017. V. 250. P. 15–24. https://doi.org/10.1016/j.cis.2017.11.002
  92. Guyet A., Alofi A., Daniel R. A. Insights into the roles of lipoteichoic acids and MprF in Bacillus subtilis // mBio. 2023. V. 14. Art. e0266722. https://doi.org/10.1128/mbio.02667-22
  93. Haaber J., Cohn M. T., Frees D., Andersen T. J., Ingmer H. Planktonic aggregates of Staphylococcus aureus protect against common antibiotics // PLoS One. 2012. V. 7. Art. e41075. https://doi.org/10.1371/journal.pone.0041075
  94. Haist J., Neumann S. A., Al-Bassam M.M., Lindenberg S., Elliot M. A., Tschowri N. Specialized and shared functions of diguanylate cyclases and phosphodiesterases in Streptomyces development // Mol. Microbiol. 2020. V. 114. P. 808–822. https://doi.org/10.1111/mmi.14581
  95. Hajiagha M. N., Kafil H. S. Efflux pumps and microbial biofilm formation // Infect. Genet. Evol. 2023. V. 112. Art. 105459. https://doi.org/10.1016/j.meegid.2023.105459
  96. Hall B. G., Barlow M. Evolution of the serine β-lactamases: past, present and future // Drug Resist. Updat. 2004. V. 7. P. 111–123. https://doi.org/10.1016/j.drup.2004.02.003
  97. Hamilton H. L., Domínguez N. M., Schwartz K. J., Hackett K. T., Dillard J. P. Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system // Mol. Microbiol. 2005. V. 55. P. 1704–1721. https://doi.org/10.1111/j.1365-2958.2005.04521
  98. Hershey D. M., Fiebig A., Crosson S. Flagellar perturbations activate adhesion through two distinct pathways in Caulobacter crescentus // mBio. 2021. V. 12. Art. e03266-20. https://doi.org/10.1128/mBio.03266-20
  99. Herzberg C., Meißner J., Warneke R., Stülke J. The many roles of cyclic di-AMP to control the physiology of Bacillus subtilis // microLife. 2023. V. 4. Art. uqad043. https://doi.org/10.1093/femsml/uqad043
  100. Hong Y., Brown D. G. Alteration of bacterial surface electrostatic potential and pH upon adhesion to a solid surface and impacts to cellular bioenergetics // Biotechnol. Bioeng. 2010. V. 105. P. 965–972. https://doi.org/10.1002/bit.22606
  101. Hossain T., Deter H. S., Peters E. J., Butzin N. C. Antibiotic tolerance, persistence, and resistance of the evolved minimal cell, Mycoplasma mycoides JCVI-Syn3B // Science. 2021. V. 24. Art. 102391. https://doi.org/10.1016/j.isci.2021.102391
  102. Hug I., Deshpande S., Sprecher K. S. Pfohl T., Jenal U. Second messenger-mediated tactile response by a bacterial rotary motor // Science. 2017. V. 358. P. 531–534. https://doi.org/10.1126/science.aan5353
  103. Huang L., Wu C., Gao H., Xu C., Dai M., Huang L., Hao H., Wang X., Cheng G. Bacterial multidrug efflux pumps at the frontline of antimicrobial resistance: An overview // Antibiotics (Basel). 2022. V. 11. Art. 520. https://doi.org/10.3390/antibiotics11040520
  104. Ibáñez de Aldecoa A. L., Zafra O., González-Pastor J. E. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities // Front. Microbiol. 2017. V. 8. Art. 1390. https://doi.org/10.3389/fmicb.2017.01390
  105. Jakubovics N. S., Goodman S. D., Mashburn-Warren L., Stafford G. P., Cieplik F. The dental plaque biofilm matrix // Periodontol. 2000. 2021. V. 86. P. 32−56. https://doi.org/10.1111/prd.12361
  106. Jeong G. J., Khan F., Tabassum N., Kim Y. M. Natural and synthetic molecules with potential to enhance biofilm formation and virulence properties in Pseudomonas aeruginosa // Crit. Rev. Microbiol. 2023. V. 15. P. 1−29. https://doi.org/10.1080/1040841X.2023.2282459
  107. Jeong G. J., Khan F., Tabassum N., Cho K. J., Kim Y. M. Bacterial extracellular vesicles: modulation of biofilm and virulence properties // Acta Biomater. 2024. V. 178. P. 13−23. https://doi.org/10.1016/j.actbio.2024.02.029
  108. Jiang W., Wang X., Su Y., Cai L., Li J., Liang J., Gu Q., Sun M., Shi L. Intranasal immunization with a c-di-GMP-adjuvanted acellular pertussis vaccine provides superior immunity against Bordetella pertussis in a mouse model // Front. Immunol. 2022. V. 13. Art. 878832. https://doi.org/10.3389/fimmu.2022.878832
  109. Kalia M., Amari D., Davies D. G., Sauer K. Cis-DA-dependent dispersion by Pseudomonas aeruginosa biofilm and identification of cis-DA-sensory protein DspS // mBio. 2023. V. 14. Art. e0257023. https://doi.org/10.1128/mbio.02570-23
  110. Kebriaei R., Lev K. L., Shah R. M., Stamper K. C., Holger D. J., Morrisette T., Kunz Coyne A. J., Lehman S. M., Rybak M. J. Eradication of biofilm-mediated methicillin-resistant Staphylococcus aureus infections in vitro: bacteriophage-antibiotic combination // Microbiol. Spectr. 2022. V. 10. Art. e0041122. https://doi.org/10.1128/spectrum.00411-22
  111. Kimkes T. E.P., Heinemann M. Reassessing the role of the Escherichia coli CpxAR system in sensing surface contact // PLoS One. 2018. V 13. Art. e0207181. https://doi.org/10.1371/journal.pone. 0207181
  112. Kimkes T. E.P., Heinemann M. How bacteria recognise and respond to surface contact // FEMS Microbiol. Rev. 2020. V. 44. P. 106–122. https://doi.org/10.1093/femsre/fuz029
  113. Knezevic J., Starchl C., Tmava Berisha A., Amrein K. Thyroid-gut-axis: how does the microbiota influence thyroid function? // Nutrients. 2020. V. 12. Art. 1769. https://doi.org/
  114. Kotowska A. M., Zhang J., Carabelli A., Watts J., Aylott J. W., Gilmore I. S., Williams P., Scurr D. J., Alexander M. R. Toward comprehensive analysis of the 3D chemistry of Pseudomonas aeruginosa biofilms // Anal. Chem. 2023. V. 95. P. 18287–18294. https://doi.org/10.1021/acs.analchem.3c04443
  115. Koul S., Kalia V. C. Multiplicity of quorum quenching enzymes: a potential mechanism to limit quorum sensing bacterial population // Indian J. Microbiol. 2017. V. 57. P. 100–108. https://doi.org/10.1007/s12088-016-0633-1
  116. Kowalska-Krochmal B., Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance // Pathogens. 2021. V. 10. Art. 165. https://doi.org/10.3390/pathogens1002016
  117. Kragh K. N., Tolker-Nielsen T., Lichtenberg M. The non-attached biofilm aggregate // Commun. Biol. 2023. V. 6. Art. 898. https://doi.org/10.1038/s42003-023-05281-4
  118. Krasnopeeva E., Barboza-Perez U.E., Rosko J., Pilizota T., Lo C. J. Bacterial flagellar motor as a multimodal biosensor // Methods. 2021. V. 193. P. 5–15. https://doi.org/10.1016/j.ymeth.2020.06.012
  119. Krasteva P. V., Giglio K. M., Sondermann H. Sensing the messenger: the diverse ways that bacteria signal through c-di-GMP // Protein Sci. 2012. V. 21. P. 929–948. https://doi.org/10.1002/pro.2093
  120. Kunz Coyne A. J., Stamper K., Bleick C., Kebriaei R., Lehman S. M., Rybak M. J. Synergistic bactericidal effects of phage-enhanced antibiotic therapy against MRSA biofilms // Microbiol. Spectr. 2024. V. 12. Art. e0321223. https://doi.org/10.1128/spectrum.03212-23
  121. Lawther K., Santos F. G., Oyama L. B., Huws S. A. Chemical signalling within the rumen microbiome // Anim. Biosci. 2024. V. 37. P. 337–345. https://doi.org/10.5713/ab.23.0374
  122. Lee K. J., Kim J. A., Hwang W., Park S. J., Lee K. H. Role of capsular polysaccharide (CPS) in biofilm formation and regulation of CPS production by quorum-sensing in Vibrio vulnificus // Mol. Microbiol. 2013. V. 90. P. 841–857. https://doi.org/10.1111/mmi.12401
  123. Ledeboer N. A., Jones B. D. Exopolysaccharide sugars contribute to biofilm formation by Salmonella enterica serovar typhimurium on HEp-2 cells and chicken intestinal epithelium // J. Bacteriol. 2005. V. 187. P. 3214–3226. https://doi.org/10.1128/JB.187.9.3214-3226.2005
  124. Limoli D. H., Jones C. J., Wozniak D. J. Bacterial extracellular polysaccharides in biofilm formation and function // Microbiol. Spectr. 2015. V. 3. Art. 10.1128/microbiolspec.MB-0011-2014. https://doi.org/10.1128/microbiolspec.MB-0011-2014
  125. Mack W. N., Mack J. P., Ackerson A. O. Microbial film development in a trickling filter // Microb. Ecol. 1975. V. 2. P. 215−226. https://doi.org/10.1007/BF02010441
  126. Madi L., Henis Y. Aggregation in Azospirillum brasilense Cd: conditions and factors involved in cell-to-cell adhesion // Plant Soil. 1989. V. 115. P. 89−98. https://doi.org/10.1007/bf02220698
  127. Makabenta J. M.V., Park J., Li C. H., Chattopadhyay A. N., Nabawy A., Landis R. F., Gupta A., Schmidt-Malan S., Patel R., Rotello V. M. Polymeric nanoparticles active against dual-species bacterial biofilms // Molecules. 2021. V. 26. Art. 4958. https://doi.org/10.3390/molecules26164958
  128. Manasherob R., Mooney J. A., Lowenberg D. W., Bollyky P. L., Amanatullah D. F. Tolerant small-colony variants form prior to resistance within a Staphylococcus aureus biofilm based on antibiotic selective pressure // Clin. Orthop. Relat. Res. 2021. V. 479. P. 1471–1481. https://doi.org/10.1097/CORR.0000000000001740
  129. Markus V., Golberg K., Teralı K., Ozer N., Kramarsky-Winter E., Marks RS., Kushmaro A. Assessing the molecular targets and mode of action of furanone C-30 on Pseudomonas aeruginosa quorum sensing // Molecules. 2021. V. 26. Art. 1620. https://doi.org/10.3390/molecules26061620
  130. Marshall K. C. Microorganisms and interfaces // Biosciences. 1980. V. 30. P. 246–249. https://doi.org/10.2307/1307879
  131. McBrayer D.N., Cameron C. D., Tal-Gan Y. Development and utilization of peptide-based quorum sensing modulators in Gram-positive bacteria // Org. Biomol. Chem. 2020. V. 18. P. 7273–7290. https://doi.org/10.1039/d0ob01421d
  132. McSwain B.S., Irvine R. L., Hausner M., Wilderer P. A. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge // Appl. Environ. Microbiol. 2005. V. 71. P. 1051−1057. https://doi.org/10.1128/AEM.71.2.1051-1057.2005
  133. Mills E., Pultz I. S., Kulasekara H. D., Miller S. I. The bacterial second messenger c-di-GMP: mechanisms of signaling // Cell. Microbiol. 2011. V. 13. P. 1122–1129. https://doi.org/10.1111/j.1462-5822.2011.01619
  134. Mehmood A., Liu G., Wang X., Meng G., Wang C., Liu Y. Fungal quorum-sensing molecules and inhibitors with potential antifungal activity: a review // Molecules. 2019. V. 10. Art. 1950. https://doi.org/10.3390/molecules24101950
  135. Mitra A., Mukhopadhyay S. Regulation of biofilm formation by non-coding RNA in prokaryotes // Curr. Res. Pharmacol. Drug Discov. 2022. V. 4. Art. 100151. https://doi.org/10.1016/j.crphar.2022.100151
  136. Mlynek K. D., Bulock L. L., Stone C. J., Curran L. J., Sadykov M. R., Bayles K. W., Brinsmade S. R. Genetic and biochemical analysis of CodY-mediated cell aggregation in Staphylococcus aureus reveals an interaction between extracellular DNA and polysaccharide in the extracellular matrix // J. Bacteriol. 2020. V. 202. Art. e00593-19. https://doi.org/10.1128/JB.00593-19
  137. Motlagh A. M., Bhattacharjee A. S., Goel R. Biofilm control with natural and genetically-modified phages // World J. Microbiol. Biotechnol. 2016. V. 32. Art. 67. https://doi.org/10.1007/s11274-016-2009-4
  138. Mu M., Liu S., DeFlorio W., Hao L., Wang X., Salazar K. S., Taylor M., Castillo A., Cisneros-Zevallos L., Oh J. K., Min Y., Akbulut M. Influence of surface roughness, nanostructure, and wetting on bacterial adhesion // Langmuir. 2023. V. 39. P. 5426–5439. https://doi.org/10.1021/acs.langmuir.3c00091
  139. Muras A., Otero-Casal P., Blanc V., Otero A. Acyl homoserine lactone-mediated quorum sensing in the oral cavity: a paradigm revisited // Sci. Rep. 2020. V. 10 Art. 9800. https://doi.org/10.1038/s41598-020-66704-4
  140. Nesper J., Hug I., Kato S., Hee C. S., Habazettl J. M., Manfredi P., Grzesiek S., Schirmer T., Emonet T., Jenal U. Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators // Elife. 2017. V. 6. Art e28842. https://doi.org/10.7554/eLife.28842
  141. Nguyen H. T.T., Nguyen T. H., Otto M. The staphylococcal exopolysaccharide PIA – biosynthesis and role in biofilm formation, colonization, and infection // Comput. Struct. Biotechnol. J. 2020. V. 18. P. 3324−3334. https://doi.org/10.1016/j.csbj.2020.10.027
  142. Nielsen L., Li X., Halverson L. J. Cell-cell and cell-surface interactions mediated by cellulose and a novel exopolysaccharide contribute to Pseudomonas putida biofilm formation and fitness under water-limiting conditions // Environ. Microbiol. 2011. V. 13. P. 1342–1356. https://doi.org/10.1111/j.1462-2920.2011.02432
  143. Noakes F. F., Smitten K. L., Maple L. E.C., Bernardino de la Serna J., Robertson C. C., Pritchard D., Fairbanks S. D., Weinstein J. A., Smythe C. G.W., Thomas J. A. Phenazine cations as anticancer theranostics // J. Am. Chem. Soc. 2024. V. 146. P. 12836–12849. https://doi.org/10.1021/jacs.4c03491
  144. Nwoko E. Q.A., Okeke I. N. Bacteria autoaggregation: how and why bacteria stick together // Biochem. Soc. Trans. 2021. V. 49. P.1147−1157. https://doi.org/10.1042/BST20200718
  145. Omran B. A., Tseng B. S., Baek K. H. Nanocomposites against Pseudomonas aeruginosa biofilms: recent advances, challenges, and future prospects // Microbiol. Res. 2024. V. 282. Art. 127656. https://doi.org/10.1016/j.micres.2024.127656
  146. Panlilio H., Rice C. V. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms // Biotechnol. Bioeng. 2021. V. 118. P. 2129−2141. https://doi.org/10.1002/bit.27760
  147. Pezzoni M., Lemos M., Pizzaro R. A., Costa C. S. UVA as environmental signal for alginate production in Pseudomonas aeruginosa: role of this polysaccharide in the protection of planktonic cells and biofilms against lethal UVA doses // Photochem. Photobiol. Sci. 2022. V. 21. P. 1459–1472. https://doi.org/10.1007/s43630-022-00236-w
  148. Penesyan A., Paulsen I. T., Gillings M. R., Kjelleberg S. Manefield M. J. Secondary effects of antibiotics on microbial biofilms // Front. Microbiol. 2020. V. 11. Art. 2109. https://doi.org/10.3389/fmicb.2020.02109
  149. Pham H. T., Shi W., Xiang Y., Foo S. Y., Plan M. R., Courtin P., Chapot-Chartier M.-P., Smid E. J., Liang Z.-X., Marcellin E., Turner M. S. 2021. Cyclic di-AMP oversight of counter-ion osmolyte pools impacts intrinsic cefuroxime resistance in Lactococcus lactis // mBio. 2021. V. 12. Art. e00324-21. https://doi.org/10.1128/mBio.00324-21
  150. Pinto R. M., Soares F. A., Reis S., Nunes C., Van Dijck P. Innovative strategies toward the disassembly of the EPS matrix in bacterial biofilms // Front. Microbiol. 2020. V. 11. Art. 952. https://doi.org/10.3389/fmicb.2020.00952
  151. Potapova A., Garvey W., Dahl P., Guo S., Chang Y., Schwechheimer C., Trebino M. A., Floyd K. A., Phinney B. S., Liu J., Malvankar N. S., Yildiz F. H. Outer membrane vesicles and the outer membrane protein OmpU govern Vibrio cholerae biofilm matrix assembly // mBio. 2024. V. 15. Art. e0330423. https://doi.org/10.1128/mbio.03304-23
  152. Pratt L. A., Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili // Mol. Microbiol. 1998. V. 30. P. 285–293. https://doi.org/10.1046/j.1365-2958.1998.01061.x
  153. Professor Koch’ Remedy for Tuberculosis // Indian J. Med. Res. 2023. V. 157. P. 169–173. https://doi.org/10.4103/0971-5916.373948
  154. Qi X., Yun C., Pang Y., Qiao J. The impact of the gut microbiota on the reproductive and metabolic endocrine system // Gut Microb. 2021. V. 13. P. 1–21. https://doi.org/10.1080/19490976.2021.1894070
  155. Rajput A., Kumar M. Computational exploration of putative LuxR solos in archaea and their functional implications in quorum sensing // Front. Microbiol. 2017. V. 8. Art. 798. https://doi.org/10.3389/fmicb.2017.00798
  156. Ramakrishnan R., Singh A. K., Singh S., Chakravortty D., Das D. Enzymatic dispersion of biofilms: an emerging biocatalytic avenue to combat biofilm-mediated microbial infections // J. Biol. Chem. 2022. V. 298. Art. 102352. https://doi.org/10.1016/j.jbc.2022.102352
  157. Rather M. A., Gupta K., Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies // Braz. J. Microbiol. 2021. V. 52. P. 1701–1718. https://doi.org/10.1007/s42770-021-00624-x
  158. Reichhardt C. The Pseudomonas aeruginosa biofilm matrix protein CdrA has similarities to other fibrillar adhesin proteins // J. Bacteriol. 2023. V. 205. Art. e0001923. https://doi.org/10.1128/jb.00019-23
  159. Rodrigues C. F., Černáková L. Farnesol and tyrosol: secondary metabolites with a crucial quorum-sensing role in Candida biofilm development // Genes (Basel). 2020. V. 11. P. 444. https://doi.org/10.3390/genes11040444
  160. Ruhal R., Kataria R. Biofilm patterns in gram-positive and gram-negative bacteria // Microbiol. Res. 2021. V. 251. Art. 126829. https://doi.org/10.1016/j.micres.2021.126829
  161. Rumbaugh K. P., Sauer K. Biofilm dispersion // Nat. Rev. Microbiol. 2020. V. 18. P. 571–586. https://doi.org/10.1038/s41579-020-0385-0
  162. Sabra A., Bessoule J. J., Atanasova-Penichon V., Noël T., Dementhon K. Host-pathogen interaction and signaling molecule secretion are modified in the dpp3 knockout mutant of Candida lusitaniae // Infect. Immun. 2014. V. 82. P. 413–422. https://doi.org/10.1128/IAI.01263-13
  163. Salzer A., Wolz C. Role of (p)ppGpp in antibiotic resistance, tolerance, persistence and survival in Firmicutes // Microlife. 2023. V. 4. Art. uqad009. https://doi.org/10.1093/femsml/uqad009
  164. Sauer K., Camper A. K., Ehrlich G. D., Costerton J. W., Davies D. G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm // J. Bacteriol. 2002. V. 184. P. 1140–1154. https://doi.org/10.1038/s41579-022-00767-0
  165. Sauer K., Stoodley P., Goeres D. M., Hall-Stoodley L., Burmølle M., Stewart P. S., Bjarnsholt T. The biofilm life cycle: expanding the conceptual model of biofilm formation // Nature Rev. Microbiol. 2022. V. 20. P. 608−620. https://doi.org/10.1038/s41579-022-00767-0
  166. Shamir E. R., Warthan M., Brown S. P., Nataro J. P., Guerrant R. L., Hoffman P. S. Nitazoxanide inhibits biofilm production and hemagglutination by enteroaggregative Escherichia coli strains by blocking assembly of AafA fimbriae // Antimicrob. Agents Chemother. 2010. V. 54. P. 1526−1533. https://doi.org/10.1128/AAC.01279-09
  167. Schilcher K., Horswill A. R. Staphylococcal biofilm development: structure, regulation, and treatment strategies // Microbiol. Mol. Biol. Rev. 2020. V. 84. Art. e00026-19. https://doi.org/10.1128/MMBR.00026-19
  168. Schirmer T. C-di-GMP synthesis: structural aspects of evolution, catalysis and regulation // J. Molec. Biol. 2016. V. 428. P. 3683–3701. https://doi.org/10.1016/j.jmb.2016.07.023
  169. Schirmer T., Jenal U. Structural and mechanistic determinants of c-di-GMP signaling // Nature Rev. Microbiol. 2009. V. 7. P. 724–735. https://doi.org/10.1038/nrmicro2203
  170. Schleheck D., Barraud N., Klebensberger J., Webb J. S., McDougald D., Rice S. A., Kjelleberg S. Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation // PLoS One. 2009. V. 4. Art. e5513. https://doi.org/10.1371/journal.pone.0005513
  171. Shikuma N. J., Fong J. C., Yildiz F. H. Cellular levels and binding of c-di-GMP control subcellular localization and activity of the Vibrio cholerae transcriptional regulator VpsT // PLoS Pathog. 2012. V. 5. Art. e1002719. https://doi.org/10.1371/journal.ppat.1002719
  172. Sikdar R., Elias M. H. Evidence for complex interplay between quorum sensing and antibiotic resistance in Pseudomonas aeruginosa // Microbiol. Spectr. 2022. V. 10. Art. e0126922. https://doi.org/10.1128/spectrum.01269-22
  173. Soares A., Alexandre K., Etienne M. Tolerance and persistence of Pseudomonas aeruginosa in biofilms exposed to antibiotics: molecular mechanisms, antibiotic strategies and therapeutic perspectives // Front. Microbiol. 2020. V. 11. Art. 2057. https://doi.org/10.3389/fmicb.2020.02057
  174. Songca S. P., Adjei Y. Applications of antimicrobial photodynamic therapy against bacterial biofilms // Int. J. Mol. Sci. 2022. V. 23. Art. 3209. https://doi.org/10.3390/ijms23063209
  175. de Souza Oliveira P. F., Faria A. V.S., Clerici S. P., Akagi E. M., Carvalho H. F., Justo G. Z., Durán N., Ferreira-Halder C. V. Violacein negatively modulates the colorectal cancer survival and epithelial-mesenchymal transition // J. Cell Biochem. 2022. V. 123. P. 1247–1258. https://doi.org/10.1002/jcb.30295
  176. Sycz Z., Tichaczek-Goska D., Wojnicz D. Anti-planktonic and anti-biofilm properties of pentacyclic triterpenes-asiatic acid and ursolic acid as promising antibacterial future pharmaceuticals // Biomolec. 2022. V. 12. Art. 98. https://doi.org/10.3390/biom12010098
  177. Tal R., Wong H. C., Calhoon R., Gelfand D., Fear A. L., Volman G., Mayer R., Ross P., Amikam D., Weinhouse H., Cohen A., Sapir S., Ohana P., Benziman M. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes // J. Bacteriol. 1998. V. 180. P. 4416–4425. https://doi.org/10.1128/JB.180.17.4416-4425.1998
  178. Taş N., de Jong A. E., Li Y., Trubl G., Xue Y., Dove N. C. Metagenomic tools in microbial ecology research // Curr. Opin. Biotechnol. 2021. V. 67. P. 184–191. https://doi.org/0.1016/j.copbio.2021.01.019
  179. Teteneva N. A., Mart’yanov S.V., Esteban-López M., Kahnt J., Glatter T., Netrusov A. I., Plakunov V. K., Sourjik V. Multiple drug-induced stress responses inhibit formation of E. coli biofilms // Appl. Environ. Microbiol. 2020. V. 86. Art. e01113-20. https://doi.org/10.1128/AEM.01113-20
  180. Thompson T. P., Busetti A., Gilmore B. F. Quorum sensing in Halorubrum saccharovorum facilitates cross-domain signaling between archaea and bacteria // Microorganisms. 2023. V. 11. Art. 1271. https://doi.org/10.3390/microorganisms11051271
  181. Toyofuku M., Roschitzki B., Riedel K., Eberl L. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix // J. Proteom. Res. 2012. V. 11. P. 4906–4915. https://doi.org/10.1021/pr300395j
  182. Urbaniec J., Xu Y., Hu Y., Hingley-Wilson S., McFadden J. Phenotypic heterogeneity in persisters: a novel “hunker” theory of persistence // FEMS Microbiol. Rev. 2022. V. 46. Art. fuab042. https://doi.org/10.1093/femsre/fuab042
  183. Utada A. S., Bennett R. R., Fong J. C.N., Gibiansky M. L., Yildiz F. H., Golestanian R., Wong G. C.L. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment // Nat. Commun. 2014. V. 5. Art. 4913. https://doi.org/10.1038/ncomms5913
  184. Vasina D. V., Antonova N. P., Shidlovskaya E. V., Kuznetsova N. A., Grishin A. V., Akoulina E. A., Trusova E. A., Lendel A. M., Mazunina E. P., Kozlova S. R., Dudun A. A., Bonartsev A. P., Lunin V. G., Gushchin V. A. Alginate gel encapsulated with enzybiotics cocktail is effective against multispecies biofilms // Gels. 2024. V. 10. Art. 60. https://doi.org/10.3390/gels10010060
  185. Vuong C., Kocianova S., Voyich J. M., Yao Y., Fischer E. R., DeLeo F.R., Otto M. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence // J. Biol. Chem. 2004. V. 279. P. 54881–54886. https://doi.org/10.1074/jbc.M411374200
  186. Wall G., Montelongo-Jauregui D., Vidal Bonifacio B., Lopez-Ribot J.L., Uppuluri P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis // Curr. Opin. Microbiol. 2019. V. 52. P. 1–6. https://doi.org/10.1016/j.mib.2019.04.001
  187. Webster S. S., Lee C. K., Schmidt W. C., Wong G. C.L., O’Toole G. A. Interaction between the type 4 pili machinery and a diguanylate cyclase fine-tune c-di-GMP levels during early biofilm formation // Proc. Natl. Acad. Sci. USA. 2021. V. 118. Art. e2105566118. https://doi.org/10.1073/pnas.2105566118
  188. Williams D. E., Boon E. M. Towards understanding the molecular basis of nitric oxide-regulated group behaviors in pathogenic bacteria // J. Innate Immun. 2019. V. 11. P. 205−215. https://doi.org/10.1159/000494740
  189. Van Wolferen M., Orell A., Albers S.-V. Archaeal biofilm formation // Nature Rev. Microbiol. 2018. V. 16. P. 699–713. https://doi.org/10.1038/s41579-018-0058-4
  190. Wright G. D. The antibiotic resistome // Expert Opin. Drug Discov. 2010. V. 5. P. 779–788. https://doi.org/10.1517/17460441.2010.497535
  191. Wu M., Huang S., Du J., Jiang S., Cai Z., Zhan L., Huang X. Role of D‐alanylation of Streptococcus mutans lipoteichoic acid in interspecies competitiveness // Mol. Oral Microbiol. 2021. V. 36. P. 233–242. https://doi.org/10.1111/omi.12344
  192. Xiong F., Zhao X., Wen D., Li Q. Effects of N-acyl-homoserine lactones-based quorum sensing on biofilm formation, sludge characteristics, and bacterial community during the start-up of bioaugmented reactors // Sci. Total Environ. 2020. V. 735. Art. 139449. https://doi.org/10.1016/j.scitotenv.2020.139449
  193. Xu G. Evolution of LuxR solos in bacterial communication: receptors and signals // Biotechnol. Lett. 2020. V. 42. P. 181–186. https://doi.org/10.1007/s10529-019-02763-6
  194. Yan J., Bassler B. L. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms // Cell Host Microbe. 2019. V. 26. P. 15–21. https://doi.org/10.1016/j.chom.2019.06.002
  195. Yildiz F. H., Schoolnik G. K. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation // Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 4028–4033. https://doi.org/10.1073/pnas.96.7.4028
  196. Yliniemi J. Surface layer alteration of multi-oxide silicate glasses at a near-neutral pH in the presence of citric and tartaric acid // Langmuir. 2022. V. 38. P. 987–1000. https://doi.org/10.1021/acs.langmuir.1c02378
  197. Zadeh R. G., Kalani B. S., Ari M. M., Talebi M., Razavi S., Jazi F. M. Isolation of persister cells within the biofilm and relative gene expression analysis of type II toxin/antitoxin system in Pseudomonas aeruginosa isolates in exponential and stationary phases // J. Glob. Antimicrob. Resist. 2022. V. 28. P. 30–37. https://doi.org/10.1016/j.jgar.2021.11.009
  198. Zhang G., Zhang F., Ding G., Li J., Guo X., Zhu J., Zhou L., Cai S., Liu X., Luo Y., Zhang G., Shi W., Dong X. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon // ISME J. 2012. V. 6. P. 1336–1344. https://doi.org/10.1038/ismej.2011.203
  199. Zhang J., Brown J., Scurr D., Bullen A., MacLellan-Gibson K., Williams P., Hardie K. R., Gilmore I. S., Rakowska P. D. Cryo-OrbiSIMS for 3D molecular imaging of a bacterial biofilm in its native state // Anal. Chem. 2020. V. 92. P. 9008–9015. https://doi.org/10.1021/acs.analchem.0c01125
  200. Zhang Z., Lizer N., Wu Z., Morgan C. E., Yan Y., Zhang Q., Yu E. W. Cryo-electron microscopy structures of a Campylobacter multidrug efflux pump reveal a novel mechanism of drug recognition and resistance // Microbiol. Spectr. 2023. V. 11. Art. e0119723. https://doi.org/10.1128/spectrum.01197-23
  201. Zhu J., Krom B. P., Sanglard D., Intapa C., Dawson C. C., Peters B. M., Shirtliff M. E., Jabra-Rizk M. A. Farnesol-induced apoptosis in Candida albicans is mediated by Cdr1-p extrusion and depletion of intracellular glutathione // PLoS One. 2011. V. 6. Art. e28830. https://doi.org/10.1371/journal.pone.0028830
  202. Zobell C. E. The influence of solid surface upon the physiological activities of bacteria in sea water // J. Bacteriol. 1937. V. 33. P. 86.
  203. Zobell C. E. The effect of solid surfaces upon bacterial activity // J. Bacteriol. 1943. V. 46. P. 39–56. https://doi.org/10.1128/jb.46.1.39-56.1943

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Структурные формулы тирозола ((2-(4-гидрокосифенил)-этанол) и фарнезола (3,7,11-триметилдодека-2,6,10-триен-1-ол) (по Rodrigues, Černáková, 2020).

Скачать (39KB)
3. Рис. 2. Этапы развития микробных биопленок. Первый этап: ауто- или коагрегация бактерий, либо прикрепление к внешней (биотической/абиотической) поверхности; второй этап: рост и созревание биопленки за счет пролиферации (и захвата) клеток, а также биосинтеза ВПМ; третий этап: дисперсия биопленки в виде фрагментов или отдельных бактерий, в том числе, с целью заселения нового жизненного пространства или для включения в новые агрегаты (по Sauer et al., 2022, с изменениями).

Скачать (177KB)

© Российская академия наук, 2025