Биопленки как предполагаемая базовая форма существования микроорганизмов: современные представления
- Авторы: Плакунов В.К.1, Журина М.В.1, Мартьянов С.В.1, Ганнесен А.В.1
-
Учреждения:
- Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук
- Выпуск: Том 94, № 4 (2025)
- Страницы: 303-329
- Раздел: ОБЗОРЫ
- URL: https://cijournal.ru/0026-3656/article/view/686841
- DOI: https://doi.org/10.31857/S0026365625040014
- ID: 686841
Цитировать
Аннотация
В обзоре анализируются современные сведения о процессах формирования микробных биопленок, как закрепленных на биотических и абиотических поверхностях, так и возникающих в результате автоагрегации и коагрегации в толще жидкости. Подробно описаны физико-химические явления, протекающие при распознавании клетками микроорганизмов поверхности раздела фаз. Детально описаны компоненты внеклеточного полимерного матрикса биопленок, регуляция их образования, структурное значение для архитектуры биопленок и защитная роль при воздействии биоцидов (в том числе антибиотиков) и прочих неблагоприятных факторов внешней среды. Рассмотрены подходы к управлению формированием микробных биопленок. Подвергнута анализу предложенная в литературе новая схема формирования микробных биопленок, включающая три этапа вместо пяти.
Полный текст

Об авторах
В. К. Плакунов
Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук
Email: aegopodium102011@gmail.com
Институт микробиологии им. С.Н. Виноградского
Россия, 119071, МоскваМ. В. Журина
Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук
Email: aegopodium102011@gmail.com
Институт микробиологии им. С.Н. Виноградского
Россия, 119071, МоскваС. В. Мартьянов
Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук
Email: aegopodium102011@gmail.com
Институт микробиологии им. С.Н. Виноградского
Россия, 119071, МоскваА. В. Ганнесен
Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук
Автор, ответственный за переписку.
Email: aegopodium102011@gmail.com
Институт микробиологии им. С.Н. Виноградского
Россия, 119071, МоскваСписок литературы
- Журина М. В., Кострикина Н. А., Паршина Е. А., Стрелкова Е. А., Юсипович А. И., Максимов Г. В., Плакунов В. К. Визуализация внеклеточного полимерного матрикcа биопленок Chromobacterium violaceum с помощью микроскопических методов // Микробиология. 2013. T. 82. C. 502–509. https://doi.org/10.7868/s0026365613040162
- Zhurina M. V., Kostrikina N. A., Parshina E. Yu., Strelkova E. A., Yusipovich A. I., Maksimov G. V., Plakunov V. K. Visualization of the extracellular polymeric matrix of Chromobacterium violaceum biofilms by microscopic methods // Microbiology (Moscow). 2013. V. 82. P. 517–524. https://doi.org/10.1134/S0026261713040164
- Журина М. В., Ганнесен А. В., Мартьянов С. В., Тетенева Н. А., Штратников В. Ю., Плакунов В. К. Никлозамид как перспективный антибиопленочный агент // Микробиология. 2017. Т. 86. С. 439–447. https://doi.org/10.7868/S0026365617040152
- Zhurina M. V., Gannesen A. V., Mart’yanov S.V., Teteneva N. A., Shtratnikov V. Yu., Plakunov V. K. Niclosamide as a promising antibiofilm agent // Microbiology (Moscow). 2017. V. 86. P. 455–462. https://doi.org/10.1134/S0026261717040154
- Журина М. В., Николаев Ю. А., Плакунов В. К. Роль внеклеточного полимерного матрикса в защитном эффекте при действии антибиотика азитромицина на Chromobacterium violaceum // Микробиология. 2019. Т. 88. С. 497–500. https://doi.org/10.1134/S0026365619040153
- Zhurina M. V., Nikolaev Yu.A., Plakunov V. K. Role of the extracellular polymer matrix in azithromycin protection of Chromobacterium violaceum biofilms // Microbiology (Moscow). 2019. V. 88. P. 275–281. https://doi.org/10.1134/S0026261719040155
- Журина М. В., Каллистова А. Ю., Панюшкина А. Е., Ганнесен А. В., Мартьянов С. В., Герасин В. А., Сивов Н. А., Тихомиров В. А., Плакунов В. К. Специфика формирования мультивидовых микробных биопленок на поверхности полиэтилена // Микробиология. 2020. Т. 89. С. 400–409. https://doi.org/10.31857/S0026365620040187
- Zhurina M. V., Kallistova A. Yu., Panyushkina A. E., Gannesen A. V., Mart’yanov S.V., Gerasin V. A., Sivov N. A., Tikhomirov V. A., Plakunov V. K. Specific features of formation of multispecies microbial biofilms on polyethylene surface // Microbiology (Moscow). 2020. V. 89. P. 396–404. https://doi.org/10.1134/S0026261720040165
- Журина М. В., Богданов К. И., Ганнесен А. В., Мартьянов С. В., Плакунов В. К. Микропластики – новая экологическая ниша в пластисфере для мультивидовых микробных биопленок // Микробиология. 2022. Т. 91. С. 131–149. https://doi.org/10.31857/S0026365622020148
- Zhurina M. V., Bogdanov K. I., Gannesen A. V., Mart’yanov S.V., Plakunov V. K. Microplastics as a new ecological niche for multispecies microbial biofilms within the plastisphere // Microbiology (Moscow). 2022. V. 91. P. 107–123. https://doi.org/10.1134/S0026261722020126
- Мартьянов С. В., Летаров А. В., Иванов П. А., Плакунов В. К. Стимуляция биосинтеза виолацеина в биопленках Chromobacterium violaceum под воздействием диметилсульфоксида // Микробиология. 2018. Т. 87. С. 325–329. https://doi.org/10.7868/S0026365618030102
- Mart’yanov S. V., Letarov A. V., Ivanov P. A., Plakunov V. K. Stimulation of violacein biosynthesis in Chromobacterium violaceum biofilms in the presence of dimethyl sulfoxide // Microbiology (Moscow). 2018. V. 87. P. 437–440. https://doi.org/10.1134/S0026261718030050
- Ножевникова А. Н., Бочкова Е. А., Плакунов В. К. Мультивидовые биопленки в экологии, медицине и биотехнологии // Микробиология. 2015. Т. 84. С. 623–644. https://doi.org/10.7868/S0026365615060117
- Nozhevnikova A. N., Botchkova E. A., Plakunov V. K. Multispecies biofilms in ecology, medicine, and biotechnology // Microbiology (Moscow). 2015. V. 84. P. 731–750. https://doi.org/10.1134/S0026261715060107
- Пиневич А. В., Коженкова Е. В., Аверина С. Г. Биопленки и другие прокариотные консорциумы. СПб.: Химиздат, 2018. 263 с.
- Плакунов В. К., Мартьянов С. В., Тетенева Н. А., Журина М. В. Управление формированием микробных биопленок: анти- и пробиопленочные агенты (обзор) // Микробиология. 2017. Т. 86. С. 402–420. https://doi.org/10.7868/S0026365617040127
- Plakunov V. K., Mart’yanov S.V., Teteneva N. A., Zhurina M. V. Controlling of microbial biofilms formation: anti- and probiofilm agents, review // Microbiology (Moscow). 2017. V. 86. P. 423–438. https://doi.org/10.1134/ S0026261717040129
- Плакунов В. К., Журина М. В., Ганнесен А. В., Мартьянов С. В., Николаев Ю. А. Антибиопленочные агенты: неоднозначность терминологии и стратегия поиска // Микробиология. 2019а. Т. 88. С. 705–709. https://doi.org/10.1134/S0026365619060144
- Plakunov V. K., Zhurina M. V., Gannesen A. V., Mart’yanov S.V., Nikolaev Yu. A. Antibiofilm agents: therminological ambiguity and strategy for search // Microbiology (Moscow). 2019a. V. 88. P. 747–750. https://doi.org/10.1134/S0026261719060146
- Плакунов В. К., Николаев Ю. А., Ганнесен А. В., Чемаева Д. С., Журина М. В. Новый подход к выявлению защитной роли Esсherichia coli в отношении грамположительных бактерий при действии антибиотиков на бинарные биопленки // Микробиология. 2019б. Т. 88. С. 288–296. https://doi.org/10.1134/S0026365619030091
- Plakunov V. K., Nikolaev Yu.A., Gannesen A. V., Chemaeva D. S., Zhurina M. V. A new approach to detection of the protective effect of Escherichia coli on Gram-positive bacteria in binary biofilms in the presence of antibiotics // Microbiology (Moscow). 2019b. V. 88. P. 275–281. https://doi.org/10.1134/S0026261719030093
- Плакунов В. К., Ганнесен А. В., Мартьянов С. В., Журина М. В. Биокоррозия синтетических пластмасс: механизмы деградации и способы защиты // Микробиология. 2020. Т. 89. С. 631–645. https://doi.org/10.31857/S0026365620060142
- Plakunov V. K., Gannesen A. V., Mart’yanov S.V., Zhurina M. V. Biocorrosion of synthetic plastics: degradation mechanisms and methods of protection // Microbiology (Moscow). 2020. V. 89. P. 647–659. https://doi.org/10.1134/S0026261720060144
- Стрелкова Е. А., Позднякова Н. В., Журина М. В., Плакунов В. К., Беляев С. С. Роль внеклеточного полимерного матрикса в устойчивости бактериальных биопленок к экстремальным факторам среды // Микробиология. 2013. Т. 82. С. 131–138. https://doi.org/10.7868/S0026365613020158
- Strelkova E. A., Pozdnyakova N. V., Zhurina M. V., Plakunov V. K., Belyaev S. S. Role of the extracellular polymer matrix in resistance of bacterial biofilms to extreme environmental factors // Microbiology (Moscow). 2013. V. 82. P. 119–125. https://doi.org/10.1134/S0026261712020142
- Abdelkader J., Alelyani M., Alashban Y., Alghamdi S. A., Bakkour Y. Modification of dispersin B with cyclodextrin-ciprofloxacin derivatives for treating staphylococcal // Molecules. 2023. V. 28. Art. 5311. https://doi.org/10.3390/molecules28145311
- Abreu-Pereira C.A., Klein M. I., Lobo C. I.V., Gorayb Pereira A. L., Jordão C. C., Pavarina A. C. DNase enhances photodynamic therapy against fluconazole-resistant Candida albicans biofilms // Oral Dis. 2023. V. 29. P. 1855−1867. https://doi.org/10.1111/odi.14149
- Aherne O., Mørch M., Ortiz R., Shannon O., Davies J. R. A novel multiplex fluorescent-labeling method for the visualization of mixed-species biofilms in vitro // Microbiol. Spectr. 2024. V. 12. Art. e0025324. https://doi.org/10.1128/spectrum.00253-24
- Al-Otaibi N.S., Bergeron J. R.C. Structure and assembly of the bacterial flagellum // Subcell. Biochem. 2022. V. 99. P. 395–420. https://doi.org/10.1007/978-3-031-00793-4_13
- Alshatwi A. A., Subash-Babu P., Antonisamy P. Violacein induces apoptosis in human breast cancer cells through up regulation of BAX, p53 and down regulation of MDM2 // Exp. Toxicol. Pathol. 2016. V. 68. P. 89–97. https://doi.org/10.1016/j.etp.2015.10.002
- Anantharaman S., Guercio D., Mendoza A. G., Withorn J. M., Boon E. M. Negative regulation of biofilm formation by nitric oxide sensing proteins // Biochem. Soc. Trans. 2023. V. 51. P. 1447−1458. https://doi.org/10.1042/BST20220845
- Angelin J. Kavitha M. Exopolysaccharides from probiotic bacteria and their health potential // Int. J. Biol. Macromol. 2020. V. 162. P. 853–865. https://doi.org/10.1016/j.ijbiomac.2020.06.190
- Armbruster C. R., Lee C. K., Parker-Gilham J., de Anda J., Xia A., Zhao K., Murakami K., Tseng B. S., Hoffman L. R., Jin F., Harwood C. S., Wong G. C., Parsek M. R. Heterogeneity in surface sensing suggests a division of labor in Pseudomonas aeruginosa populations // eLife. 2019. V. 8. Art. e45084. https://doi.org/10.7554/eLife.45084
- Armitage J. P., Berry R. M. Assembly and dynamics of the bacterial flagellum // 2020. V. 74. P. 181–200. https://doi.org/10.1146 /annurev-micro-090816-093411
- Arnaouteli S., Bamford N. C., Stanley-Wall N.R., Kovács Á. T. Bacillus subtilis biofilm formation and social interactions // Nat. Rev. Microbiol. 2021. V. 19. P. 600−614. https://doi.org/10.1038/s41579-021-00540-9
- Avbelj M., Zupan J., Raspor P. Quorum-sensing in yeast and its potential in wine making // Appl. Microbiol. Biotechnol. 2016. V. 100. P. 7841–7852. https://doi.org/10.1007/s00253-016-7758-3
- Balducci E., Papi F., Capialbi D. E., Del Bino L. Polysaccharides’ structures and functions in biofilm architecture of antimicrobial-resistant (AMR) pathogens // Int. J. Mol. Sci. 2023. V. 24. Art. 4030. https://doi.org/10.3390/ijms24044030
- Baltz R. H. Antibiotic discovery from actinomycetes: will a renaissance follow the decline and fall? // SIM News. 2005. V. 55. P. 186–196. https://www.researchgate.net/publication/284626065
- Batoni G., Maisetta G., Esin S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria // Biochim. Biophys. Acta. 2016. V. 1858. P. 1044–1060. https://doi.org/10.1016/j.bbamem.2015.10.013
- Bernardi S., Anderson A., Macchiarelli G., Hellwig E., Cieplik F., Vach K., Al-Ahmad A. Subinhibitory antibiotic concentrations enhance biofilm formation of clinical Enterococcus faecalis isolates // Antibiotics (Basel). 2021. V. 10. Art. 874. https://doi.org/10.3390/antibiotics10070874
- Berne C., Ellison C. K., Ducret A., Brun Y. V. Bacterial adhesion at the single-cell level // Nature Rev. Microbiol. 2018a. V. 16. P. 616–627. https://doi.org/10.1038/s41579-018-0057-5
- Berne C., Ellison C. K., Agarwal R., Severin G. B., Fiebig A., Morton R. I., Waters C. M., Brun Y. V. Feedback regulation of Caulobacter crescentus holdfast synthesis by flagellum assembly via the holdfast inhibitor HfiA // Mol. Microbiol. 2018b. V. 110. P. 219–238. https://doi.org/10.1111/mmi.14099
- Besharova O., Suchanek V. M., Hartmann R., Drescher K., Sourjik V. Diversification of gene expression during formation of static submerged biofilms by Escherichia coli // Front. Microbiol. 2016. V. 7. Art 1568. https://doi.org/10.3389/fmicb.2016.01568
- Bhattacharya S. P., Karmakar S., Acharya K., Bhattacharya A. Quorum sensing inhibition and antibiofilm action of triterpenoids: an updated insight // Fitoterapia. 2023. V. 167. Art. 105508. https://doi.org/10.1016/j.fitote.2023.105508
- Bilsland E., Tavella T. A., Krogh R., Stokes J. E., Roberts A., Ajioka J., Spring D. R., Andricopulo A. D., Costa F. T.M., Oliver S. G. Antiplasmodial and trypanocidal activity of violacein and deoxyviolacein produced from synthetic operons // BMC Biotechnol. 2018. V. 18. Art. 22. https://doi.org/10.1186/s12896-018-0428-z
- Bjarnsholt T., Alhede M., Alhede M., Eickhardt-Sørensen S.R., Moser C., Kühl M., Jensen P. O., Høiby N. The in vivo biofilm // Trend. Microbiol. 2013. V. 21. P. 466–474. https://doi.org/10.1016/j.tim.2013.06.002
- Boinovich L. B., Kaminsky V. V., Domantovsky A. G., Emelyanenko K. A., Aleshkin A. V., Zulkarneev E. R., Kiseleva I. A., Emelyanenko A. M. Bactericidal activity of superhydrophobic and superhydrophilic copper in bacterial dispersions // Langmuir. 2019. V. 35. P. 2832–2841. https://doi.org/10.1021/acs.langmuir.8b03817
- Boldrin F., Provvedi R., Cioetto Mazzabò L., Segafreddo G., Manganelli R. Tolerance and persistence to drugs: a main challenge in the fight against Mycobacterium tuberculosis // Front. Microbiol. 2020. V. 11. Art. 1924. https://doi.org/10.3389/fmicb.2020.01924
- Bottagisio M., Soggiu A., Piras C., Bidossi A., Greco V., Pieroni L., Bonizzi L., Roncada P., Lovati A. B. Proteomic analysis reveals a biofilm-like behavior of planktonic aggregates of Staphylococcus epidermidis grown under environmental pressure/stress // Front. Microbiol. 2019. V. 10. Art. 1909. https://doi.org/10.3389/fmicb.2019.01909
- Boyd C. D., O’Toole G. A. Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems // Ann. Rev. Cell Develop. Biol. 2012. V. 28. P. 439–462. https://doi.org/10.1146/annurev-cellbio-101011-155705
- Brameyer S., Heermann R. Specificity of signal-binding via non-AHL LuxR-type receptors // PLoS One. 2015. V. 10. Art. e0124093. https://doi.org/10.1371/journal.pone.0124093
- Brown S., Santa Maria J. P. Jr., Walker S. Wall teichoic acids of gram-positive bacteria // Annu. Rev. Microbiol. 2013. V. 67. P. 313–336. https://doi.org/10.1146/annurev-micro-092412-155620
- Braun F., Thomalla L., van der Does C., Quax T. E.F., Allers T., Kaever V., Albers S. V. Cyclic nucleotides in archaea: cyclic di-AMP in the archaeon Haloferax volcanii and its putative role // Microbiology Open. 2019. V. 8. Art. e00829. https://doi.org/10.1002/mbo3.829
- Cai Y.-M. Non-surface attached bacterial aggregates: a ubiquitous third lifestyle // Front. Microbiol. 2020. V. 11. Art. 557035. https://doi.org/10.3389/fmicb.2020.557035
- Campoccia D., Montanaro L., Arciola C. R. Extracellular DNA (eDNA). A major ubiquitous element of the bacterial biofilm architecture // Int. J. Mol. Sci. 2021. V. 22. Art. 9100. https://doi.org/10.3390/ijms22169100
- Cancino-Diaz M.E., Guerrero-Barajas C., Betanzos-Cabrera G., Cancino-Diaz J. C. Nucleotides as bacterial second messengers // Molecules. 2023. V. 28. Art. 7996. https://doi.org/10.3390/molecules28247996
- Casadidio C., Mayol L., Biondi M., Scuri S., Cortese M., Hennink WE., Vermonden T., De Rosa G., Di Martino P., Censi R. Anionic polysaccharides for stabilization and sustained release of antimicrobial peptides // Int. J. Pharm. 2023. V. 636. Art. 122798. https://doi.org/10.1016/j.ijpharm.2023.122798
- Charani E., Holmes A. Antibiotic stewardship-twenty years in the making // Antibiotics (Basel). 2019. V. 8. Art. 7. https://doi.org/10.3390/antibiotics8010007
- Chen H., Fujita M., Feng Q., Clardy J., Fink G. R. Tyrosol is a quorum-sensing molecule in Candida albicans // Proc. Natl. Acad. Sci. USA. 2004. V. 101. P. 5048–5052. https://doi.org/10.1073/pnas.0401416101
- Cho E., Hwang J. Y., Park J. S., Oh D., Oh D. C., Park H. G., Shin J., Oh K. B. Inhibition of Streptococcus mutans adhesion and biofilm formation with small-molecule inhibitors of sortase A from Juniperus chinensis // J. Oral. Microbiol. 2022. V. 14. Art. 2088937. https://doi.org/10.1080/20002297.2022.2088937
- Choi H. M., Calvert C. R., Husain N., Huss D., Barsi J. C., Deverman B. E., Hunter R. C., Kato M., Lee S. M., Abelin A. C., Rosenthal A. Z., Akbari O. S., Li Y., Hay B. A., Sternberg P. W., Patterson P. H., Davidson E. H., Mazmanian S. K., Prober D. A., van de Rijn M., Leadbetter J. R., Newman D. K., Readhead C., Bronner M. E., Wold B., Lansford R., Sauka-Spengler T., Fraser S. E., Pierce N. A. Mapping a multiplexed zoo of mRNA expression // Development. 2016. V. 143. P. 3632–3637. https://doi.org/10.1242/dev.140137
- Chou S.-H., Guiliani N., Lee V. T., Römling U. (Eds.). Microbial cyclic di-nucleotide signaling. Springer Nature Switzerland AG. 2020. https://doi.org/10.1007/978-3-030-33308-9
- Cordero O. X., Datta M. S. Microbial interactions and community assembly at microscales // Curr. Opin. Microbiol. 2016. V. 31. P. 227–234. https://doi.org/10.1016/j.mib.2016.03.015
- Corno G., Coci M., Giardina M., Plechuk S., Campanile F., Stefani S. Antibiotics promote aggregation within aquatic bacterial communities // Front. Microbiol. 2014. V. 5. Art. 297. https://doi.org/10.3389/fmicb.2014.00297
- Corrigan R. M., Gründling A. Cyclic di-AMP: another second messenger enters the fray // Nature Revs. Microbiol. 2013. V. 11. P. 513–524. https://doi.org/10.1038/nrmicro3069
- Costerton J. W., Geesey G. G., Cheng K.-J. How bacteria stick // Scientific American. 1978. V. 238. P. 86–95. https://doi.org/10.1038/scientificamerican0178-86
- Costerton J. W. Overview of microbial biofilms // J. Ind. Microbiol. 1995. V. 15. P. 137–140. https://doi.org/10.1007/bf01569816
- Costerton J. W., Philip S. Stewart P. S., Greenberg E. P. Bacterial Biofilms: A common cause of persistent infections // Science. 1999. V. 284. P. 1318–1322. https://doi.org/10.1126/science.284.5418.1318
- Cramton S. E., Gerke C., Schnell N. F., Nichols W. W., Götz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation // Infect. Immun. 1999. V. 67. P. 5427–5433. https://doi.org/10.1128/iai.67.10.5427-5433.1999
- Demkina E. V., Ilicheva E. A., El-Registan G.I., Pankratov T. A., Yushina Y. K., Semenova A. A., Nikolaev Y. A. New approach to improving the efficiency of disinfectants against biofilms // Coatings. 2023. V. 13. Art. 582. https://doi.org/10.3390/coatings13030582
- Deter H. S., Hossain T., Butzin N. C. Antibiotic tolerance is associated with a broad and complex transcriptional response in E. coli // Sci. Rep. 2021. V. 11. Art. 6112. https://doi.org/10.1038/s41598-021-85509-7
- Dižová S., Bujdáková H. Properties and role of the quorum sensing molecule farnesol in relation to the yeast Candida albicans // Pharmazie. 2017. V. 72. P. 307–312. https://doi.org/10.1691/ph.2017.6174
- Dogsa I., Brloznik M., Stopar D., Mandic-Mulec I. Exopolymer diversity and the role of levan in Bacillus subtilis biofilms // PLoS One. 2013. V. 8. Art. e62044. https://doi.org/10.1371/journal.pone.0062044
- Dogsa I., Kostanjšek R., Stopar D. eDNA provides a scaffold for autoaggregation of B. subtilis in bacterioplankton suspension // Microorganisms. 2023. V. 11. P. 332. https://doi.org/10.3390/microorganisms11020332
- Donlan R. M. Biofilms: microbial life on surfaces // Emerg. Infect. Dis. 2002. V. 8. P. 881–890. https://doi.org/10.3201/eid0809.020063
- Eboigbodin K. E., Newton J. R.A., Routh A. F., Biggs C. A. Role of nonadsorbing polymers in bacterial aggregation // Langmuir. 2005. V. 21. P. 12315–12319. https://doi.org/10.1021/la051740u
- Emelyanenko A. M., Pytskii I. S., Kaminsky V. V., Chulkova E. V., Domantovsky A. G., Emelyanenko K. A., Sobolev V. D., Aleshkin A. V., Boinovich L. B. Superhydrophobic copper in biological liquids: Antibacterial activity and microbiologically induced or inhibited corrosion // Colloids Surf. B Biointerfaces. 2020. V. 185. Art. 110622. https://doi.org/10.1016/j.colsurfb.2019.110622
- Encinas N., Yang C.-Y., Geyer F., Kaltbeitzel A., Baumli P., Reinholz J., Mailänder V., Butt H. J., Vollmer D. Submicrometer-sized roughness suppresses bacteria adhesion // ACS Appl. Mater. Interfaces. 2020. V. 12. P. 21192−21200. https://doi.org/10.1021/acsami.9b22621
- Epler Barbercheck C. R., Bullitt E., Andersson M. Bacterial adhesion pili // Subcell. Biochem. 2018. V. 87. P. 1–18. https://doi.org/10.1007/978-981-10-7757-9_1
- Fischer J. T., Hossain S., Boon E. M. NosP modulates cyclic-di-GMP signaling in Legionella pneumophila // Biochemistry. 2019. V. 58. P. 4325−4334. https://doi.org/10.1021/acs.biochem.9b00618
- Flores-Valdez M.A., Peterson E. R., Aceves-Sánchez M.J., Baliga N. S., Morita Y. S., Sparks I. L., Saini D. K., Yadav R., Lang R., Mata-Espinosa D., León-Contreras J.C., Hernández-Pando R. Comparison of the transcriptome, lipidome, and c-di-GMP production between CGdeltaBCG1419c and BCG, with Mincle- and Myd88-dependent induction of proinflammatory cytokines in murine macrophages // Sci. Rep. 2024. V. 14. Art. 11898. https://doi.org/10.1038/s41598-024-61815-8
- Fong J. N.C., Yildiz F. H. Biofilm matrix proteins // Microbiol. Spectr. 2015. V. 3. Art. 10.1128/microbiolspec.MB-0004-2014. https://doi.org/10.1128/microbiolspec.MB-0004-2014
- Gannesen A. V., Zdorovenko E. L., Botchkova E. A., Hardouin J., Massier S., Kopitsyn D. S., Gorbachevskii M. V., Kadykova A. A., Shashkov A. S., Zhurina M. V., Netrusov A. I., Knirel Y. A., Plakunov V. K., Feuilloley M. G.J. Composition of the biofilm matrix of Cutibacterium acnes acneic strain RT5 // Front. Microbiol. 2019. V. 10 Art. 1284. https://doi.org/10.3389/fmicb.2019.01284
- Gannesen A. V., Ziganshin R. H., Zdorovenko E. L., Klimko A. I., Ianutsevich E. A., Danilova O. A., Tereshina V. M., Gorbachevskii M. V., Ovcharova M. A., Nevolina E. D., Martyanov S. V., Shashkov A. S., Dmitrenok A. S., Novikov A. A., Zhurina M. V., Botchkova E. A., Toukach P. V., Plakunov V. K. Epinephrine extensively changes the biofilm matrix composition in Micrococcus luteus C01 isolated from human skin // Front. Microbiol. 2022. V. 13. Art. 1003942. https://doi.org/10.3389/fmicb.2022.1003942
- Gannesen A. V., Schelkunov M. I., Ziganshin R. H., Ovcharova M. A., Sukhacheva M. V., Makarova N. E., Mart’yanov S.V., Loginova N. A., Mosolova A. M., Diuvenji E. V., Nevolina E. D., Plakunov.V.K. Proteomic and transcriptomic analyses of Cutibacterium acnes biofilms and planktonic cultures in presence of epinephrine // AIMS Microbiol. 2024. V. 10. P. 363−390. https://doi.org/ 10.3934/microbiol.2024019
- Gautam S., Mahapa A., Yeramala L, Gandhi A., Krishnan S, Kutti R. V., Chatterji D. Regulatory mechanisms of c-di-AMP synthase from Mycobacterium smegmatis revealed by a structure: function analysis // Protein Sci. 2023. V. 32. Art. e4568. https://doi.org/10.1002/pro.4568
- Gerardi D., Bernardi S., Bruni A., Falisi G., Botticelli G. Characterization and morphological methods for oral biofilm visualization: where are we nowadays? // AIMS Microbiol. 2024. V. 10. P. 391−414. https://doi.org/10.3934/microbiol.2024020
- Gillings M. R. Evolutionary consequences of antibiotic use for the resistome, mobilome, and microbial pangenome // Front. Microbiol. 2013. V. 4. Art. 4. https://doi.org/10.3389/fmicb.2013.00004
- Grandclement C., Tannieres M., Morera S., Dessaux Y., Faure D. D. Quorum quenching: role in nature and applied developments // FEMS Microbiol. Revs. 2016. V. 40 P. 86–116. https://doi.org/10.1093 /femsre/fuv038
- Grooters K. E., Ku J. C., Richter D. M., Krinock M. J., Minor A., Li P., Kim A., Sawyer R., Li Y. Strategies for combating antibiotic resistance in bacterial biofilms // Front. Cell. Infect. Microbiol. 2024. V. 14. Art. 1352273. https://doi.org/10.3389/fcimb.2024.1352273
- Gusnaniar N., van der Mei H. C., Qu W., Nuryastuti T., Hooymans J. M.M., Sjollema J., Busscher H. J. Physicochemistry of bacterial transmission versus adhesion // Adv. Colloid Interface Sci. 2017. V. 250. P. 15–24. https://doi.org/10.1016/j.cis.2017.11.002
- Guyet A., Alofi A., Daniel R. A. Insights into the roles of lipoteichoic acids and MprF in Bacillus subtilis // mBio. 2023. V. 14. Art. e0266722. https://doi.org/10.1128/mbio.02667-22
- Haaber J., Cohn M. T., Frees D., Andersen T. J., Ingmer H. Planktonic aggregates of Staphylococcus aureus protect against common antibiotics // PLoS One. 2012. V. 7. Art. e41075. https://doi.org/10.1371/journal.pone.0041075
- Haist J., Neumann S. A., Al-Bassam M.M., Lindenberg S., Elliot M. A., Tschowri N. Specialized and shared functions of diguanylate cyclases and phosphodiesterases in Streptomyces development // Mol. Microbiol. 2020. V. 114. P. 808–822. https://doi.org/10.1111/mmi.14581
- Hajiagha M. N., Kafil H. S. Efflux pumps and microbial biofilm formation // Infect. Genet. Evol. 2023. V. 112. Art. 105459. https://doi.org/10.1016/j.meegid.2023.105459
- Hall B. G., Barlow M. Evolution of the serine β-lactamases: past, present and future // Drug Resist. Updat. 2004. V. 7. P. 111–123. https://doi.org/10.1016/j.drup.2004.02.003
- Hamilton H. L., Domínguez N. M., Schwartz K. J., Hackett K. T., Dillard J. P. Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system // Mol. Microbiol. 2005. V. 55. P. 1704–1721. https://doi.org/10.1111/j.1365-2958.2005.04521
- Hershey D. M., Fiebig A., Crosson S. Flagellar perturbations activate adhesion through two distinct pathways in Caulobacter crescentus // mBio. 2021. V. 12. Art. e03266-20. https://doi.org/10.1128/mBio.03266-20
- Herzberg C., Meißner J., Warneke R., Stülke J. The many roles of cyclic di-AMP to control the physiology of Bacillus subtilis // microLife. 2023. V. 4. Art. uqad043. https://doi.org/10.1093/femsml/uqad043
- Hong Y., Brown D. G. Alteration of bacterial surface electrostatic potential and pH upon adhesion to a solid surface and impacts to cellular bioenergetics // Biotechnol. Bioeng. 2010. V. 105. P. 965–972. https://doi.org/10.1002/bit.22606
- Hossain T., Deter H. S., Peters E. J., Butzin N. C. Antibiotic tolerance, persistence, and resistance of the evolved minimal cell, Mycoplasma mycoides JCVI-Syn3B // Science. 2021. V. 24. Art. 102391. https://doi.org/10.1016/j.isci.2021.102391
- Hug I., Deshpande S., Sprecher K. S. Pfohl T., Jenal U. Second messenger-mediated tactile response by a bacterial rotary motor // Science. 2017. V. 358. P. 531–534. https://doi.org/10.1126/science.aan5353
- Huang L., Wu C., Gao H., Xu C., Dai M., Huang L., Hao H., Wang X., Cheng G. Bacterial multidrug efflux pumps at the frontline of antimicrobial resistance: An overview // Antibiotics (Basel). 2022. V. 11. Art. 520. https://doi.org/10.3390/antibiotics11040520
- Ibáñez de Aldecoa A. L., Zafra O., González-Pastor J. E. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities // Front. Microbiol. 2017. V. 8. Art. 1390. https://doi.org/10.3389/fmicb.2017.01390
- Jakubovics N. S., Goodman S. D., Mashburn-Warren L., Stafford G. P., Cieplik F. The dental plaque biofilm matrix // Periodontol. 2000. 2021. V. 86. P. 32−56. https://doi.org/10.1111/prd.12361
- Jeong G. J., Khan F., Tabassum N., Kim Y. M. Natural and synthetic molecules with potential to enhance biofilm formation and virulence properties in Pseudomonas aeruginosa // Crit. Rev. Microbiol. 2023. V. 15. P. 1−29. https://doi.org/10.1080/1040841X.2023.2282459
- Jeong G. J., Khan F., Tabassum N., Cho K. J., Kim Y. M. Bacterial extracellular vesicles: modulation of biofilm and virulence properties // Acta Biomater. 2024. V. 178. P. 13−23. https://doi.org/10.1016/j.actbio.2024.02.029
- Jiang W., Wang X., Su Y., Cai L., Li J., Liang J., Gu Q., Sun M., Shi L. Intranasal immunization with a c-di-GMP-adjuvanted acellular pertussis vaccine provides superior immunity against Bordetella pertussis in a mouse model // Front. Immunol. 2022. V. 13. Art. 878832. https://doi.org/10.3389/fimmu.2022.878832
- Kalia M., Amari D., Davies D. G., Sauer K. Cis-DA-dependent dispersion by Pseudomonas aeruginosa biofilm and identification of cis-DA-sensory protein DspS // mBio. 2023. V. 14. Art. e0257023. https://doi.org/10.1128/mbio.02570-23
- Kebriaei R., Lev K. L., Shah R. M., Stamper K. C., Holger D. J., Morrisette T., Kunz Coyne A. J., Lehman S. M., Rybak M. J. Eradication of biofilm-mediated methicillin-resistant Staphylococcus aureus infections in vitro: bacteriophage-antibiotic combination // Microbiol. Spectr. 2022. V. 10. Art. e0041122. https://doi.org/10.1128/spectrum.00411-22
- Kimkes T. E.P., Heinemann M. Reassessing the role of the Escherichia coli CpxAR system in sensing surface contact // PLoS One. 2018. V 13. Art. e0207181. https://doi.org/10.1371/journal.pone. 0207181
- Kimkes T. E.P., Heinemann M. How bacteria recognise and respond to surface contact // FEMS Microbiol. Rev. 2020. V. 44. P. 106–122. https://doi.org/10.1093/femsre/fuz029
- Knezevic J., Starchl C., Tmava Berisha A., Amrein K. Thyroid-gut-axis: how does the microbiota influence thyroid function? // Nutrients. 2020. V. 12. Art. 1769. https://doi.org/
- Kotowska A. M., Zhang J., Carabelli A., Watts J., Aylott J. W., Gilmore I. S., Williams P., Scurr D. J., Alexander M. R. Toward comprehensive analysis of the 3D chemistry of Pseudomonas aeruginosa biofilms // Anal. Chem. 2023. V. 95. P. 18287–18294. https://doi.org/10.1021/acs.analchem.3c04443
- Koul S., Kalia V. C. Multiplicity of quorum quenching enzymes: a potential mechanism to limit quorum sensing bacterial population // Indian J. Microbiol. 2017. V. 57. P. 100–108. https://doi.org/10.1007/s12088-016-0633-1
- Kowalska-Krochmal B., Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance // Pathogens. 2021. V. 10. Art. 165. https://doi.org/10.3390/pathogens1002016
- Kragh K. N., Tolker-Nielsen T., Lichtenberg M. The non-attached biofilm aggregate // Commun. Biol. 2023. V. 6. Art. 898. https://doi.org/10.1038/s42003-023-05281-4
- Krasnopeeva E., Barboza-Perez U.E., Rosko J., Pilizota T., Lo C. J. Bacterial flagellar motor as a multimodal biosensor // Methods. 2021. V. 193. P. 5–15. https://doi.org/10.1016/j.ymeth.2020.06.012
- Krasteva P. V., Giglio K. M., Sondermann H. Sensing the messenger: the diverse ways that bacteria signal through c-di-GMP // Protein Sci. 2012. V. 21. P. 929–948. https://doi.org/10.1002/pro.2093
- Kunz Coyne A. J., Stamper K., Bleick C., Kebriaei R., Lehman S. M., Rybak M. J. Synergistic bactericidal effects of phage-enhanced antibiotic therapy against MRSA biofilms // Microbiol. Spectr. 2024. V. 12. Art. e0321223. https://doi.org/10.1128/spectrum.03212-23
- Lawther K., Santos F. G., Oyama L. B., Huws S. A. Chemical signalling within the rumen microbiome // Anim. Biosci. 2024. V. 37. P. 337–345. https://doi.org/10.5713/ab.23.0374
- Lee K. J., Kim J. A., Hwang W., Park S. J., Lee K. H. Role of capsular polysaccharide (CPS) in biofilm formation and regulation of CPS production by quorum-sensing in Vibrio vulnificus // Mol. Microbiol. 2013. V. 90. P. 841–857. https://doi.org/10.1111/mmi.12401
- Ledeboer N. A., Jones B. D. Exopolysaccharide sugars contribute to biofilm formation by Salmonella enterica serovar typhimurium on HEp-2 cells and chicken intestinal epithelium // J. Bacteriol. 2005. V. 187. P. 3214–3226. https://doi.org/10.1128/JB.187.9.3214-3226.2005
- Limoli D. H., Jones C. J., Wozniak D. J. Bacterial extracellular polysaccharides in biofilm formation and function // Microbiol. Spectr. 2015. V. 3. Art. 10.1128/microbiolspec.MB-0011-2014. https://doi.org/10.1128/microbiolspec.MB-0011-2014
- Mack W. N., Mack J. P., Ackerson A. O. Microbial film development in a trickling filter // Microb. Ecol. 1975. V. 2. P. 215−226. https://doi.org/10.1007/BF02010441
- Madi L., Henis Y. Aggregation in Azospirillum brasilense Cd: conditions and factors involved in cell-to-cell adhesion // Plant Soil. 1989. V. 115. P. 89−98. https://doi.org/10.1007/bf02220698
- Makabenta J. M.V., Park J., Li C. H., Chattopadhyay A. N., Nabawy A., Landis R. F., Gupta A., Schmidt-Malan S., Patel R., Rotello V. M. Polymeric nanoparticles active against dual-species bacterial biofilms // Molecules. 2021. V. 26. Art. 4958. https://doi.org/10.3390/molecules26164958
- Manasherob R., Mooney J. A., Lowenberg D. W., Bollyky P. L., Amanatullah D. F. Tolerant small-colony variants form prior to resistance within a Staphylococcus aureus biofilm based on antibiotic selective pressure // Clin. Orthop. Relat. Res. 2021. V. 479. P. 1471–1481. https://doi.org/10.1097/CORR.0000000000001740
- Markus V., Golberg K., Teralı K., Ozer N., Kramarsky-Winter E., Marks RS., Kushmaro A. Assessing the molecular targets and mode of action of furanone C-30 on Pseudomonas aeruginosa quorum sensing // Molecules. 2021. V. 26. Art. 1620. https://doi.org/10.3390/molecules26061620
- Marshall K. C. Microorganisms and interfaces // Biosciences. 1980. V. 30. P. 246–249. https://doi.org/10.2307/1307879
- McBrayer D.N., Cameron C. D., Tal-Gan Y. Development and utilization of peptide-based quorum sensing modulators in Gram-positive bacteria // Org. Biomol. Chem. 2020. V. 18. P. 7273–7290. https://doi.org/10.1039/d0ob01421d
- McSwain B.S., Irvine R. L., Hausner M., Wilderer P. A. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge // Appl. Environ. Microbiol. 2005. V. 71. P. 1051−1057. https://doi.org/10.1128/AEM.71.2.1051-1057.2005
- Mills E., Pultz I. S., Kulasekara H. D., Miller S. I. The bacterial second messenger c-di-GMP: mechanisms of signaling // Cell. Microbiol. 2011. V. 13. P. 1122–1129. https://doi.org/10.1111/j.1462-5822.2011.01619
- Mehmood A., Liu G., Wang X., Meng G., Wang C., Liu Y. Fungal quorum-sensing molecules and inhibitors with potential antifungal activity: a review // Molecules. 2019. V. 10. Art. 1950. https://doi.org/10.3390/molecules24101950
- Mitra A., Mukhopadhyay S. Regulation of biofilm formation by non-coding RNA in prokaryotes // Curr. Res. Pharmacol. Drug Discov. 2022. V. 4. Art. 100151. https://doi.org/10.1016/j.crphar.2022.100151
- Mlynek K. D., Bulock L. L., Stone C. J., Curran L. J., Sadykov M. R., Bayles K. W., Brinsmade S. R. Genetic and biochemical analysis of CodY-mediated cell aggregation in Staphylococcus aureus reveals an interaction between extracellular DNA and polysaccharide in the extracellular matrix // J. Bacteriol. 2020. V. 202. Art. e00593-19. https://doi.org/10.1128/JB.00593-19
- Motlagh A. M., Bhattacharjee A. S., Goel R. Biofilm control with natural and genetically-modified phages // World J. Microbiol. Biotechnol. 2016. V. 32. Art. 67. https://doi.org/10.1007/s11274-016-2009-4
- Mu M., Liu S., DeFlorio W., Hao L., Wang X., Salazar K. S., Taylor M., Castillo A., Cisneros-Zevallos L., Oh J. K., Min Y., Akbulut M. Influence of surface roughness, nanostructure, and wetting on bacterial adhesion // Langmuir. 2023. V. 39. P. 5426–5439. https://doi.org/10.1021/acs.langmuir.3c00091
- Muras A., Otero-Casal P., Blanc V., Otero A. Acyl homoserine lactone-mediated quorum sensing in the oral cavity: a paradigm revisited // Sci. Rep. 2020. V. 10 Art. 9800. https://doi.org/10.1038/s41598-020-66704-4
- Nesper J., Hug I., Kato S., Hee C. S., Habazettl J. M., Manfredi P., Grzesiek S., Schirmer T., Emonet T., Jenal U. Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators // Elife. 2017. V. 6. Art e28842. https://doi.org/10.7554/eLife.28842
- Nguyen H. T.T., Nguyen T. H., Otto M. The staphylococcal exopolysaccharide PIA – biosynthesis and role in biofilm formation, colonization, and infection // Comput. Struct. Biotechnol. J. 2020. V. 18. P. 3324−3334. https://doi.org/10.1016/j.csbj.2020.10.027
- Nielsen L., Li X., Halverson L. J. Cell-cell and cell-surface interactions mediated by cellulose and a novel exopolysaccharide contribute to Pseudomonas putida biofilm formation and fitness under water-limiting conditions // Environ. Microbiol. 2011. V. 13. P. 1342–1356. https://doi.org/10.1111/j.1462-2920.2011.02432
- Noakes F. F., Smitten K. L., Maple L. E.C., Bernardino de la Serna J., Robertson C. C., Pritchard D., Fairbanks S. D., Weinstein J. A., Smythe C. G.W., Thomas J. A. Phenazine cations as anticancer theranostics // J. Am. Chem. Soc. 2024. V. 146. P. 12836–12849. https://doi.org/10.1021/jacs.4c03491
- Nwoko E. Q.A., Okeke I. N. Bacteria autoaggregation: how and why bacteria stick together // Biochem. Soc. Trans. 2021. V. 49. P.1147−1157. https://doi.org/10.1042/BST20200718
- Omran B. A., Tseng B. S., Baek K. H. Nanocomposites against Pseudomonas aeruginosa biofilms: recent advances, challenges, and future prospects // Microbiol. Res. 2024. V. 282. Art. 127656. https://doi.org/10.1016/j.micres.2024.127656
- Panlilio H., Rice C. V. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms // Biotechnol. Bioeng. 2021. V. 118. P. 2129−2141. https://doi.org/10.1002/bit.27760
- Pezzoni M., Lemos M., Pizzaro R. A., Costa C. S. UVA as environmental signal for alginate production in Pseudomonas aeruginosa: role of this polysaccharide in the protection of planktonic cells and biofilms against lethal UVA doses // Photochem. Photobiol. Sci. 2022. V. 21. P. 1459–1472. https://doi.org/10.1007/s43630-022-00236-w
- Penesyan A., Paulsen I. T., Gillings M. R., Kjelleberg S. Manefield M. J. Secondary effects of antibiotics on microbial biofilms // Front. Microbiol. 2020. V. 11. Art. 2109. https://doi.org/10.3389/fmicb.2020.02109
- Pham H. T., Shi W., Xiang Y., Foo S. Y., Plan M. R., Courtin P., Chapot-Chartier M.-P., Smid E. J., Liang Z.-X., Marcellin E., Turner M. S. 2021. Cyclic di-AMP oversight of counter-ion osmolyte pools impacts intrinsic cefuroxime resistance in Lactococcus lactis // mBio. 2021. V. 12. Art. e00324-21. https://doi.org/10.1128/mBio.00324-21
- Pinto R. M., Soares F. A., Reis S., Nunes C., Van Dijck P. Innovative strategies toward the disassembly of the EPS matrix in bacterial biofilms // Front. Microbiol. 2020. V. 11. Art. 952. https://doi.org/10.3389/fmicb.2020.00952
- Potapova A., Garvey W., Dahl P., Guo S., Chang Y., Schwechheimer C., Trebino M. A., Floyd K. A., Phinney B. S., Liu J., Malvankar N. S., Yildiz F. H. Outer membrane vesicles and the outer membrane protein OmpU govern Vibrio cholerae biofilm matrix assembly // mBio. 2024. V. 15. Art. e0330423. https://doi.org/10.1128/mbio.03304-23
- Pratt L. A., Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili // Mol. Microbiol. 1998. V. 30. P. 285–293. https://doi.org/10.1046/j.1365-2958.1998.01061.x
- Professor Koch’ Remedy for Tuberculosis // Indian J. Med. Res. 2023. V. 157. P. 169–173. https://doi.org/10.4103/0971-5916.373948
- Qi X., Yun C., Pang Y., Qiao J. The impact of the gut microbiota on the reproductive and metabolic endocrine system // Gut Microb. 2021. V. 13. P. 1–21. https://doi.org/10.1080/19490976.2021.1894070
- Rajput A., Kumar M. Computational exploration of putative LuxR solos in archaea and their functional implications in quorum sensing // Front. Microbiol. 2017. V. 8. Art. 798. https://doi.org/10.3389/fmicb.2017.00798
- Ramakrishnan R., Singh A. K., Singh S., Chakravortty D., Das D. Enzymatic dispersion of biofilms: an emerging biocatalytic avenue to combat biofilm-mediated microbial infections // J. Biol. Chem. 2022. V. 298. Art. 102352. https://doi.org/10.1016/j.jbc.2022.102352
- Rather M. A., Gupta K., Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies // Braz. J. Microbiol. 2021. V. 52. P. 1701–1718. https://doi.org/10.1007/s42770-021-00624-x
- Reichhardt C. The Pseudomonas aeruginosa biofilm matrix protein CdrA has similarities to other fibrillar adhesin proteins // J. Bacteriol. 2023. V. 205. Art. e0001923. https://doi.org/10.1128/jb.00019-23
- Rodrigues C. F., Černáková L. Farnesol and tyrosol: secondary metabolites with a crucial quorum-sensing role in Candida biofilm development // Genes (Basel). 2020. V. 11. P. 444. https://doi.org/10.3390/genes11040444
- Ruhal R., Kataria R. Biofilm patterns in gram-positive and gram-negative bacteria // Microbiol. Res. 2021. V. 251. Art. 126829. https://doi.org/10.1016/j.micres.2021.126829
- Rumbaugh K. P., Sauer K. Biofilm dispersion // Nat. Rev. Microbiol. 2020. V. 18. P. 571–586. https://doi.org/10.1038/s41579-020-0385-0
- Sabra A., Bessoule J. J., Atanasova-Penichon V., Noël T., Dementhon K. Host-pathogen interaction and signaling molecule secretion are modified in the dpp3 knockout mutant of Candida lusitaniae // Infect. Immun. 2014. V. 82. P. 413–422. https://doi.org/10.1128/IAI.01263-13
- Salzer A., Wolz C. Role of (p)ppGpp in antibiotic resistance, tolerance, persistence and survival in Firmicutes // Microlife. 2023. V. 4. Art. uqad009. https://doi.org/10.1093/femsml/uqad009
- Sauer K., Camper A. K., Ehrlich G. D., Costerton J. W., Davies D. G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm // J. Bacteriol. 2002. V. 184. P. 1140–1154. https://doi.org/10.1038/s41579-022-00767-0
- Sauer K., Stoodley P., Goeres D. M., Hall-Stoodley L., Burmølle M., Stewart P. S., Bjarnsholt T. The biofilm life cycle: expanding the conceptual model of biofilm formation // Nature Rev. Microbiol. 2022. V. 20. P. 608−620. https://doi.org/10.1038/s41579-022-00767-0
- Shamir E. R., Warthan M., Brown S. P., Nataro J. P., Guerrant R. L., Hoffman P. S. Nitazoxanide inhibits biofilm production and hemagglutination by enteroaggregative Escherichia coli strains by blocking assembly of AafA fimbriae // Antimicrob. Agents Chemother. 2010. V. 54. P. 1526−1533. https://doi.org/10.1128/AAC.01279-09
- Schilcher K., Horswill A. R. Staphylococcal biofilm development: structure, regulation, and treatment strategies // Microbiol. Mol. Biol. Rev. 2020. V. 84. Art. e00026-19. https://doi.org/10.1128/MMBR.00026-19
- Schirmer T. C-di-GMP synthesis: structural aspects of evolution, catalysis and regulation // J. Molec. Biol. 2016. V. 428. P. 3683–3701. https://doi.org/10.1016/j.jmb.2016.07.023
- Schirmer T., Jenal U. Structural and mechanistic determinants of c-di-GMP signaling // Nature Rev. Microbiol. 2009. V. 7. P. 724–735. https://doi.org/10.1038/nrmicro2203
- Schleheck D., Barraud N., Klebensberger J., Webb J. S., McDougald D., Rice S. A., Kjelleberg S. Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation // PLoS One. 2009. V. 4. Art. e5513. https://doi.org/10.1371/journal.pone.0005513
- Shikuma N. J., Fong J. C., Yildiz F. H. Cellular levels and binding of c-di-GMP control subcellular localization and activity of the Vibrio cholerae transcriptional regulator VpsT // PLoS Pathog. 2012. V. 5. Art. e1002719. https://doi.org/10.1371/journal.ppat.1002719
- Sikdar R., Elias M. H. Evidence for complex interplay between quorum sensing and antibiotic resistance in Pseudomonas aeruginosa // Microbiol. Spectr. 2022. V. 10. Art. e0126922. https://doi.org/10.1128/spectrum.01269-22
- Soares A., Alexandre K., Etienne M. Tolerance and persistence of Pseudomonas aeruginosa in biofilms exposed to antibiotics: molecular mechanisms, antibiotic strategies and therapeutic perspectives // Front. Microbiol. 2020. V. 11. Art. 2057. https://doi.org/10.3389/fmicb.2020.02057
- Songca S. P., Adjei Y. Applications of antimicrobial photodynamic therapy against bacterial biofilms // Int. J. Mol. Sci. 2022. V. 23. Art. 3209. https://doi.org/10.3390/ijms23063209
- de Souza Oliveira P. F., Faria A. V.S., Clerici S. P., Akagi E. M., Carvalho H. F., Justo G. Z., Durán N., Ferreira-Halder C. V. Violacein negatively modulates the colorectal cancer survival and epithelial-mesenchymal transition // J. Cell Biochem. 2022. V. 123. P. 1247–1258. https://doi.org/10.1002/jcb.30295
- Sycz Z., Tichaczek-Goska D., Wojnicz D. Anti-planktonic and anti-biofilm properties of pentacyclic triterpenes-asiatic acid and ursolic acid as promising antibacterial future pharmaceuticals // Biomolec. 2022. V. 12. Art. 98. https://doi.org/10.3390/biom12010098
- Tal R., Wong H. C., Calhoon R., Gelfand D., Fear A. L., Volman G., Mayer R., Ross P., Amikam D., Weinhouse H., Cohen A., Sapir S., Ohana P., Benziman M. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes // J. Bacteriol. 1998. V. 180. P. 4416–4425. https://doi.org/10.1128/JB.180.17.4416-4425.1998
- Taş N., de Jong A. E., Li Y., Trubl G., Xue Y., Dove N. C. Metagenomic tools in microbial ecology research // Curr. Opin. Biotechnol. 2021. V. 67. P. 184–191. https://doi.org/0.1016/j.copbio.2021.01.019
- Teteneva N. A., Mart’yanov S.V., Esteban-López M., Kahnt J., Glatter T., Netrusov A. I., Plakunov V. K., Sourjik V. Multiple drug-induced stress responses inhibit formation of E. coli biofilms // Appl. Environ. Microbiol. 2020. V. 86. Art. e01113-20. https://doi.org/10.1128/AEM.01113-20
- Thompson T. P., Busetti A., Gilmore B. F. Quorum sensing in Halorubrum saccharovorum facilitates cross-domain signaling between archaea and bacteria // Microorganisms. 2023. V. 11. Art. 1271. https://doi.org/10.3390/microorganisms11051271
- Toyofuku M., Roschitzki B., Riedel K., Eberl L. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix // J. Proteom. Res. 2012. V. 11. P. 4906–4915. https://doi.org/10.1021/pr300395j
- Urbaniec J., Xu Y., Hu Y., Hingley-Wilson S., McFadden J. Phenotypic heterogeneity in persisters: a novel “hunker” theory of persistence // FEMS Microbiol. Rev. 2022. V. 46. Art. fuab042. https://doi.org/10.1093/femsre/fuab042
- Utada A. S., Bennett R. R., Fong J. C.N., Gibiansky M. L., Yildiz F. H., Golestanian R., Wong G. C.L. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment // Nat. Commun. 2014. V. 5. Art. 4913. https://doi.org/10.1038/ncomms5913
- Vasina D. V., Antonova N. P., Shidlovskaya E. V., Kuznetsova N. A., Grishin A. V., Akoulina E. A., Trusova E. A., Lendel A. M., Mazunina E. P., Kozlova S. R., Dudun A. A., Bonartsev A. P., Lunin V. G., Gushchin V. A. Alginate gel encapsulated with enzybiotics cocktail is effective against multispecies biofilms // Gels. 2024. V. 10. Art. 60. https://doi.org/10.3390/gels10010060
- Vuong C., Kocianova S., Voyich J. M., Yao Y., Fischer E. R., DeLeo F.R., Otto M. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence // J. Biol. Chem. 2004. V. 279. P. 54881–54886. https://doi.org/10.1074/jbc.M411374200
- Wall G., Montelongo-Jauregui D., Vidal Bonifacio B., Lopez-Ribot J.L., Uppuluri P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis // Curr. Opin. Microbiol. 2019. V. 52. P. 1–6. https://doi.org/10.1016/j.mib.2019.04.001
- Webster S. S., Lee C. K., Schmidt W. C., Wong G. C.L., O’Toole G. A. Interaction between the type 4 pili machinery and a diguanylate cyclase fine-tune c-di-GMP levels during early biofilm formation // Proc. Natl. Acad. Sci. USA. 2021. V. 118. Art. e2105566118. https://doi.org/10.1073/pnas.2105566118
- Williams D. E., Boon E. M. Towards understanding the molecular basis of nitric oxide-regulated group behaviors in pathogenic bacteria // J. Innate Immun. 2019. V. 11. P. 205−215. https://doi.org/10.1159/000494740
- Van Wolferen M., Orell A., Albers S.-V. Archaeal biofilm formation // Nature Rev. Microbiol. 2018. V. 16. P. 699–713. https://doi.org/10.1038/s41579-018-0058-4
- Wright G. D. The antibiotic resistome // Expert Opin. Drug Discov. 2010. V. 5. P. 779–788. https://doi.org/10.1517/17460441.2010.497535
- Wu M., Huang S., Du J., Jiang S., Cai Z., Zhan L., Huang X. Role of D‐alanylation of Streptococcus mutans lipoteichoic acid in interspecies competitiveness // Mol. Oral Microbiol. 2021. V. 36. P. 233–242. https://doi.org/10.1111/omi.12344
- Xiong F., Zhao X., Wen D., Li Q. Effects of N-acyl-homoserine lactones-based quorum sensing on biofilm formation, sludge characteristics, and bacterial community during the start-up of bioaugmented reactors // Sci. Total Environ. 2020. V. 735. Art. 139449. https://doi.org/10.1016/j.scitotenv.2020.139449
- Xu G. Evolution of LuxR solos in bacterial communication: receptors and signals // Biotechnol. Lett. 2020. V. 42. P. 181–186. https://doi.org/10.1007/s10529-019-02763-6
- Yan J., Bassler B. L. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms // Cell Host Microbe. 2019. V. 26. P. 15–21. https://doi.org/10.1016/j.chom.2019.06.002
- Yildiz F. H., Schoolnik G. K. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation // Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 4028–4033. https://doi.org/10.1073/pnas.96.7.4028
- Yliniemi J. Surface layer alteration of multi-oxide silicate glasses at a near-neutral pH in the presence of citric and tartaric acid // Langmuir. 2022. V. 38. P. 987–1000. https://doi.org/10.1021/acs.langmuir.1c02378
- Zadeh R. G., Kalani B. S., Ari M. M., Talebi M., Razavi S., Jazi F. M. Isolation of persister cells within the biofilm and relative gene expression analysis of type II toxin/antitoxin system in Pseudomonas aeruginosa isolates in exponential and stationary phases // J. Glob. Antimicrob. Resist. 2022. V. 28. P. 30–37. https://doi.org/10.1016/j.jgar.2021.11.009
- Zhang G., Zhang F., Ding G., Li J., Guo X., Zhu J., Zhou L., Cai S., Liu X., Luo Y., Zhang G., Shi W., Dong X. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon // ISME J. 2012. V. 6. P. 1336–1344. https://doi.org/10.1038/ismej.2011.203
- Zhang J., Brown J., Scurr D., Bullen A., MacLellan-Gibson K., Williams P., Hardie K. R., Gilmore I. S., Rakowska P. D. Cryo-OrbiSIMS for 3D molecular imaging of a bacterial biofilm in its native state // Anal. Chem. 2020. V. 92. P. 9008–9015. https://doi.org/10.1021/acs.analchem.0c01125
- Zhang Z., Lizer N., Wu Z., Morgan C. E., Yan Y., Zhang Q., Yu E. W. Cryo-electron microscopy structures of a Campylobacter multidrug efflux pump reveal a novel mechanism of drug recognition and resistance // Microbiol. Spectr. 2023. V. 11. Art. e0119723. https://doi.org/10.1128/spectrum.01197-23
- Zhu J., Krom B. P., Sanglard D., Intapa C., Dawson C. C., Peters B. M., Shirtliff M. E., Jabra-Rizk M. A. Farnesol-induced apoptosis in Candida albicans is mediated by Cdr1-p extrusion and depletion of intracellular glutathione // PLoS One. 2011. V. 6. Art. e28830. https://doi.org/10.1371/journal.pone.0028830
- Zobell C. E. The influence of solid surface upon the physiological activities of bacteria in sea water // J. Bacteriol. 1937. V. 33. P. 86.
- Zobell C. E. The effect of solid surfaces upon bacterial activity // J. Bacteriol. 1943. V. 46. P. 39–56. https://doi.org/10.1128/jb.46.1.39-56.1943
Дополнительные файлы
