Улавливание субмикронных аэрозольных частиц фильтрами из нановолокон
- Авторы: Кирш В.А.1, Кирш А.А.2
-
Учреждения:
- Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
- Национальный исследовательский центр “Курчатовский институт”
- Выпуск: Том 85, № 1 (2023)
- Страницы: 38-46
- Раздел: Статьи
- Статья получена: 27.02.2025
- Статья опубликована: 01.01.2023
- URL: https://cijournal.ru/0023-2912/article/view/671780
- DOI: https://doi.org/10.31857/S0023291222600316
- EDN: https://elibrary.ru/KESENS
- ID: 671780
Цитировать
Аннотация
Рассмотрено осаждение аэрозольных частиц из стоксова потока в фильтрах из нановолокон при числах Кнудсена \({\text{Kn}}\) ∼ 1. Эффективность улавливания частиц модельными фильтрами с 2D и 3D структурой определена численным моделированием с учетом эффекта скольжения газа на волокнах в зависимости от радиуса частиц \({{r}_{{\text{p}}}}\), параметров фильтров (радиуса нановолокон \(a\), плотности упаковки \(\alpha \) и толщины фильтра) и от условий фильтрации. Показано, что коэффициенты захвата частиц нановолокнами в 2D и 3D модельных фильтрах при одинаковой малой плотности упаковки \(\alpha \) < 0.02 практически не отличаются. Установлено, что зависимость проскока частиц от их радиуса при постоянной скорости, порядка нескольких см/с, при \({\text{Kn}}\) ∼ 1 проходит через максимум, соответствующий частицам с радиусом \({{r}_{{\text{p}}}}\~a\). Рассчитанные размеры наиболее проникающих частиц согласуются с экспериментом. Полученные результаты найдут применение при выборе аэрозолей для испытания фильтров из нановолокон.
Об авторах
В. А. Кирш
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: va_kirsch@mail.ru
Россия, 119071, Москва,
Ленинский просп. 31, корп. 4
А. А. Кирш
Национальный исследовательский центр “Курчатовский институт”
Автор, ответственный за переписку.
Email: aa-kirsh@yandex.ru
Россия, 123182, Москва, пл. Академика Курчатова, 1
Список литературы
- Черняков А.Л., Кирш А.А. Эффективность фильтрации волокнистыми материалами с неоднородным распределением зарядов на волокнах // Коллоид. журн. 2015. Т. 77. С. 792‒801.
- Петрянов И.В., Кощеев В.С., Басманов П.И. и др. “Лепесток” – легкие респираторы. Издание 2-е, М.: Наука, 2015.
- Кирш А.А., Кирш В.А. Улавливание аэрозольных частиц фильтрами из волокон, покрытых слоями вискеров // Коллоид. журн. 2019. Т. 81. № 6. С. 706‒716.
- Xia T., Bian Y., Zhang L., Chen C. Relationship between pressure drop and face velocity for electrospun nanofiber filters // Energy and Buildings. 2018. V. 158. P. 987‒999.
- Hung C.H., Leung W.W.F. Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime // Separation and Purification Techn. 2011. V. 79. № 1. P. 34‒42.
- Kim H.B., Lee W.J., Choi S.C., Lee K.E., Lee M.N. Filter quality factors of fibrous filters with different fiber diameter // Aerosol Sci. Techn. 2021. V. 55. № 2. P. 154‒166.
- Кирш В.А., Кирш А.А. Улавливание наноаэрозолей фильтрами из нановолокон // Коллоид. журн. 2021. Т. 83. № 6. С. 651‒659.
- Kirsch A.A., Stechkina I.B. The theory of aerosol filtration with fibrous filters, Ch. 4, in Fundamentals of Aerosol Science / Ed. By Shaw D.T. N.Y.: Wiley-Interscience, 1978. P. 165‒256.
- Choi H.Y., Kumita M., Seto T., Inui Y., Bao L., Fujimoto T., Otani Y. Effect of slip flow on the pressure drop of nanofiber filters // J. Aerosol Sci. 2017. V. 114. P. 244‒249.
- Kuwabara S. The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers // J. Phys. Soc. Jpn. 1959. V. 14. № 4. P. 527‒532.
- Кирш В.А. Гидродинамическое сопротивление трехмерных модельных волокнистых фильтров // Коллоид. журн. 2006. Т. 68. № 3. С. 293‒298.
- Кирш В.А. Осаждение аэрозольных наночастиц в волокнистых фильтрах // Коллоид. журн. 2003. Т. 65. № 6. С. 795‒801.
- Ландау Л.Д., Лифшиц И.М. Теоретическая физика, Т. 6 Гидродинамика. Издание 4-е, М.: Наука, 1988.
- Albertoni S., Cercignani C., Gotusso L. Numerical evaluation of the slip coefficient // Phys. Fluids. 1963. V. 6. № 7. P. 993‒996.
- Ролдугин В.И., Кирш А.А., Емельяненко А.М. Моделирование аэрозольных фильтров при промежуточных числах Кнудсена // Коллоид. журн. 1999. Т. 61. № 4. С. 530‒542.
- Левич В.Г. Физико-химическая гидродинамика. М.: ГИФМЛ, 1959.
- Берковский Б.М., Полевиков В.К. Вычислительный эксперимент в конвекции. Минск: “Университетское”, 1988.
- Kirsch A.A., Stechkina I.B., Fuchs N.A. Effect of gas slip on the pressure drop in a system of parallel cylinders // J. Colloid Interface Sci. 1971. V. 37. № 2. P. 458‒461.
- Pich J. Pressure drop of fibrous filters at small Knudsen Numbers // Ann. Occup. Hyg. 1966. V. 9. № 1. P. 23‒27.
- Стечкина И.Б., Фукс Н.А. Исследование в области волокнистых аэрозольных фильтров. Расчeт диффузионного осаждения аэрозолей в волокнистых фильтрах // Коллоид. журн. 1967. Т. 29. № 2. С. 260‒265.
- Кирш В.А. Осаждение субмикронных аэрозольных частиц в фильтрах из ультратонких волокон // Коллоид. журн. 2004. Т. 66. № 3. С. 352‒357.
- Кирш А.А., Фукс Н.А. Исследования в области волокнистых аэрозольных фильтров. Диффузионное осаждение аэрозолей // Коллоид. журн. 1968. Т. 30. № 6. С. 836‒841.
- Davies C.N. The separation of airborne dust and particles // Proc. Inst. Mech. Engineers, London. 1952. V. 167. № 5. P. 185‒213.
- Reai M., Drolet F., Vidal D., Vadeiko I., Bertrand F. A Lattice Boltzmann approach for predicting the capture efficiency of random fibrous media // Asia-Pacific J. Chem. Eng. 2011. V. 6. № 1. P. 29‒37.
- Lee K.W., Liu B.Y.H. Theoretical study of aerosol filtration by fibrous filters // Aerosol Sci. Techn. 1982. V. 1. № 2. P. 147‒161.
- Кирш В.А., Кирш А.А. Влияние наноиголочек на волокнах и частицах на эффективность фильтрации аэрозолей // Коллоид. журн. 2021. Т. 83. № 3. С. 293‒301.
Дополнительные файлы
