Получение наноабразива для магнитореологического полирования кристаллов KDP

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Технология магнитореологического полирования широко применяется при обработке высокоточных оптических элементов. Одним из определяющих факторов в технологии магнитореологического полирования является природа и качество наноабразива в составе магнитореологической суспензии. В данном исследовании разработан способ золь-гель синтеза наносфер аморфного диоксида кремния, применяющегося в качестве наноабразива при магнитореологическом полировании водорастворимых кристаллов, используемых для изготовления нелинейно-оптических элементов лазерной техники. Технический результат достигнут введением в состав магнитореологической суспензии синтезированного наноабразива диоксида кремния. Представлены физико-химические характеристики полученного наноабразива. Результаты электронной микроскопии подтверждают сферическую морфологию частиц SiO2, а также установлено распределение частиц по размерам, варьирующееся в пределах 40–60 нм, что обеспечивает однородность и качество обработки поверхности оптических элементов магнитореологической суспензией. Структурные свойства наноабразива SiO2 были исследованы методом рентгеновской порошковой дифракции. Введение в состав магнитореологической суспензии наноабразива SiO2 позволило достичь высокого качества обработки и чистоты поверхности, а также обеспечило финишное полирование поверхности монокристаллов KDP до значения шероховатости не более 6 Å. Результаты работы представляют интерес для оптимизации процесса и совершенствования технологии магнитореологического полирования.

Полный текст

Доступ закрыт

Об авторах

Д. В. Белов

Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН; Институт физики микроструктур РАН

Автор, ответственный за переписку.
Email: bdv@ipfran.ru
Россия, ул. Ульянова, 46, Нижний Новгород, 603950; ул. Академическая, 7, д. Афонино, Кстовский р-н, Нижегородская обл., 603950

С. Н. Беляев

Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН; Институт физики микроструктур РАН

Email: bdv@ipfran.ru
Россия, ул. Ульянова, 46, Нижний Новгород, 603950; ул. Академическая, 7, д. Афонино, Кстовский р-н, Нижегородская обл., 603950

О. А. Мальшакова

Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН; Институт физики микроструктур РАН

Email: bdv@ipfran.ru
Россия, ул. Ульянова, 46, Нижний Новгород, 603950; ул. Академическая, 7, д. Афонино, Кстовский р-н, Нижегородская обл., 603950

Н. А. Сороколетова

Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН; Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: bdv@ipfran.ru
Россия, ул. Ульянова, 46, Нижний Новгород, 603950; пр. Гагарина, 23, Нижний Новгород, 603022

Е. И. Серебров

Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН; Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: bdv@ipfran.ru
Россия, ул. Ульянова, 46, Нижний Новгород, 603950; пр. Гагарина, 23, Нижний Новгород, 603022

Список литературы

  1. Zhang L., Wang S., Li T., Zhu L., Ye Z. Properties of nonlinear optical absorption and refraction of rapidly grown KDP crystals // Ceramics International. 2024. V. 50. № 7. Part B. P. 11756–11765. https://doi.org/10.1016/j.ceramint.2024.01.080
  2. Zhang S., Zong W. Micro defects on diamond tool cutting edge affecting the ductile-mode machining of KDP crystal // Micromachines. 2020. V. 11. № 12. P. 1102. https://doi.org/10.3390/mi11121102
  3. Bogush G.H., Tracy M.A., Zukoski C.F. Preparation of monodisperse silica particles: Control of size and mass fraction // Journal of Non-Crystalline Solids. 1988. V. 104. № 1. P. 95–106. https://doi.org/10.1016/0022-3093(88)90187-1
  4. Lindberg R., Sjöblom J., Sundholm G. Preparation of silica particles utilizing the sol-gel and the emulsion-gel processes // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1995. V. 99. № 1. P. 79–88. https://doi.org/10.1016/0927-7757(95)03117-V
  5. Singh L.P., Bhattacharyya S.K., Kumar R. et. al. Sol-Gel processing of silica nanoparticles and their applications // Advances in Colloid and Interface Science. 2014. V. 214. P. 17–37. https://doi.org/10.1016/j.cis.2014.10.007
  6. Stöber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range // Journal of Colloid and Interface Science. 1968. V. 26. № 1. P. 62–69. https://doi.org/10.1016/0021-9797(68)90272-5
  7. Koch C.C. Nanostructured materials. Processing, Properties and Applications. 2nd edition: Elsevier, 2006.
  8. Wright J.D., Sommerdijk N.A.J.M. Sol-gel materials: Chemistry and applications. CRC Press, 2000. 136 p. https://doi.org/10.1201/9781315273808
  9. Sakka S. Handbook of sol-gel science and technology: Applications of sol-gel technology. Springer Science & Business Media, 2005. 716 p.
  10. da Silva A.S., dos Santos J.H.Z. Stöber method and its nuances over the years // Advances in Colloid and Interface Science. 2023. V. 314. P. 102888. https://doi.org/10.1016/j.cis.2023.102888
  11. Хлебцов Б.Н., Буров А.М. Синтез монодисперсных силикатных частиц методом контролируемого доращивания // Коллоид. журн. 2023. Т. 85. № 3. С. 376–389. https://doi.org/10.31857/S0023291223600293
  12. Зарипов А.К. Упругие свойства магнитных жидкостей // Коллоид. журн. 2021. Т. 83. № 6. С. 634–643. https://doi.org/10.31857/S0023291221060185
  13. Cheng H., Yeung Y., Tong H. Viscosity behavior of magnetic suspensions in fluid-assisted finishing // Progress in Natural Science. 2008. V. 18. № 1. P. 91–96. https://doi.org/10.1016/j.pnsc.2007.07.007
  14. Shulman Z.P., Kordonsky V.I., Zaltsgendler E.A. et. al. Structure, physical properties and dynamics of magnetorheological suspensions // International Journal of Multiphase Flow. 1986. V. 12. № 6. P. 935–955. https://doi.org/10.1016/0301-9322(86)90036-4
  15. Bossis G., Lacis S., Meunier A., Volkova O. Magnetorheological fluids // Journal of Magnetism and Magnetic Materials. 2002. V. 252. P. 224–228. https://doi.org/10.1016/S0304-8853(02)00680-7
  16. Jacobs S.D., Shorey A.B. Magnetorheological finishing: New fluids for new materials. In Optical Fabrication and Testing, 2000. p. OWB1. https://doi.org/10.1364/OFT.2000.OWB1
  17. Bedi T.S., Singh A.K. Magnetorheological methods for nanofinishing – a review // Particulate Science and Technology. 2015. V. 34. № 4. P. 412–422. https://doi.org/10.1080/02726351.2015.1081657
  18. Jacobs S.D. Manipulating mechanics and chemistry in precision optics finishing // Science and Technology of Advanced Materials. 2007. V. 8. № 3. P. 153–157. https://doi.org/10.1016/j.stam.2006.12.002
  19. Русецкий А.М., Новикова З.А., Городкин Г.Р., Коробко Е.В. Разработка магнитоструктурирующихся жидкостей с управляемой реологией для технологии // Доклады НАН Беларуси. 2011. Т. 55. № 5. С. 97–104.
  20. Глеб Л.К., Городкин Г.Р., Горшков В.А., Хлебников Ф.П., Семенов Е.В. Применение магнитореологических методов обработки оптических деталей на серии автоматизированных полировально-доводочных станков // Оптический журнал. 2011. Т. 78. № 4. С. 33–36.
  21. Yu X.L., Yang W., Chen C.X., Zhu F.W. Magnetic composite fluid optimization for KDP crystal polishing based on a D-optimal mixture design // Applied Optics. 2023. V. 62. № 4. P. 1019–1026. https://doi.org/10.1364/AO.481344
  22. Amir M., Mishra V., Sharma R., Ali S.W., Khan G.S. Polishing performance of a magnetic nanoparticle-based nanoabrasive for superfinish optical surfaces // Applied Optics. 2022. V. 61. № 17. P. 5179–5188. https://doi.org/10.1364/AO.456819
  23. Бредихин В.И. Кристаллы типа KDP для мощных лазерных систем: проблемы скоростного роста и оптические свойства // Дисс. докт. физ.-мат наук. 2010. 274 с.
  24. Андреев Н.Ф., Бабин А.А., Бредихин В.И., Ершов В.П. Производство крупногабаритной оптики из водорастворимых кристаллов // Фотоника. 2007. № 5. С. 34–37.
  25. Белов Д.В., Беляев С.Н. Патент № 2808226 на изобретение “Состав магнитореологической суспензии для финишной обработки оптических элементов на основе водорастворимых кристаллов”, 28.11.2023 (по заявке № 2023122895 от 04.09.2023).
  26. Lucovsky G. Low-temperature growth of silicon dioxide films: A study of chemical bonding by ellipsometry and infrared spectroscopy // Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 1987. V. 5. № 2. P. 530–537. https://doi.org/10.1116/1.583944
  27. Kim J.-T., Kim M.-C. Silicon wafer technique for infrared spectra of silica and solid samples (I) // Korean Journal of Chemical Engineering. 1986. V. 3. № 1. P. 45–51. https://doi.org/10.1007/BF02697522
  28. Артамонова О.В., Сергуткина О.Р., Останкова И.В., Шведова М.А. Синтез нанодисперсного модификатора на основе SiO2 для цементных композитов // Конденсированные среды и межфазные границы. 2014. Т. 16. № 2. С. 152–162.
  29. Хлуднева А.С., Карпов С.И., Ресснер Ф., Селеменев В.Ф. Структура и сорбционные свойства мезопористых кремнеземов, синтезированных при варьировании температуры и кремниевой основы // Сорбционные и хроматографические процессы. 2021. Т. 21. № 5. С. 669–680. https://doi.org/10.17308/sorpchrom.2021.21/3773
  30. Васькевич В.В., Гайшун В.Е., Коваленко Д.Л. Синтез и исследование силикатных золь-гель покрытий для микро- и наноэлектроники // Nanosystems, Nanomaterials, Nanotechnologies. 2014. Т. 12. № 2. С. 279–293.
  31. Peng X., Jiao F., Chen H., Tie G., Shi F., Hu H. Novel magnetorheological figuring of KDP crystal // Chinese Optics Letters. 2011. V. 9. № 10. P. 102201–102205. https://doi.org/10.3788/col201109.102201
  32. Wang D., Shinmura T., Yamaguchi H. Study of magnetic field assisted mechanochemical polishing process for inner surface of Si3N4 ceramic components // International Journal of Machine Tools and Manufacture. 2004. V. 44. № 14. P. 1547–1553. https://doi.org/10.1016/j.ijmachtools.2004.04.024
  33. Geng Z., Huang N., Castelli M., Fang F. Polishing approaches at atomic and close-to-atomic scale // Micromachines. 2023. V. 14. № 2. P. 343. https://doi.org/10.3390/mi14020343
  34. Shorey A.B., Jacobs S.D., Kordonski W.I., Gans R.F. Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing // Applied Optics. 2001. V. 40. № 1. P. 20–33. https://doi.org/10.1364/ao.40.000020

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Фотографии магнитореологической суспензии вне магнитного поля (а), в присутствии магнитного поля (б).

Скачать (48KB)
3. Рис. 2. Фотография нелинейного оптического элемента из монокристаллического кристалла KDP размером 180×180×10 мм.

Скачать (17KB)
4. Рис. 3. Фотография модуля магнитореологического полирования: блок рабочего инструмента (I); блок циркуляции магнитореологической суспензии (II): сопло подачи МРС (1); немагнитная поверхность вращающегося инструмента (2); поверхность обрабатываемой детали НОЭ (3); локальная рабочая области обработки – пятно контакта (4).

Скачать (17KB)
5. Рис. 4. Микрофотографии СЭМ: синтезированных наносфер SiO2, полученных золь-гель методом (а), (б), на вставке гистограмма распределения частиц по размерам; пирогенного “Аэросила” марки А-300 (в); аморфного кремнезема марки “Полисорб” (г), на вставках суммарные спектры локального элементного анализа.

Скачать (86KB)
6. Рис. 5. Дифрактограммы нанопорошка SiO2, полученного золь-гель методом (1); пирогенного “Аэросила” марки А-300 (2); аморфного кремнезема марки “Полисорб” (3).

Скачать (19KB)
7. Рис. 6. ИК-спектры пропускания нанопорошка SiO2, полученного золь-гель методом (1); пирогенного “Аэросила” марки А-300 (2); аморфного кремнезема марки “Полисорб” (3).

Скачать (22KB)
8. Рис. 7. Поверхность НОЭ после магнитореологического полирования: 10х, без наноабразива SiO2 (а); 50х, в присутствии наноабразива SiO2 (б); 10х, в присутствии “Аэросила” марки А-300 (в); 10х, в присутствии кремнезема марки “Полисорб” (г).

Скачать (58KB)
9. Рис. 8. Оценка шероховатости поверхности: до МР-обработки, rms = 3.32 нм (а); после МР-обработки, rms = 0.64 нм (б).

Скачать (71KB)
10. Рис. 9. Схематическое представление механизма действия наноабразива SiO2 при магнитореологическом полировании поверхности монокристалла KDP: унос с поверхности тончайших слоев материала (а); вдавливание наноабразивных частиц в поверхностные слои материала (б).

Скачать (37KB)

© Российская академия наук, 2024