Динамическая восприимчивость ансамблей иммобилизованных магнитных наночастиц
- Авторы: Зубарев А.Ю.1, Искакова Л.Ю.1, Мусихин А.Ю.1
-
Учреждения:
- Уральский федеральный университет им. Б.Н. Ельцина
- Выпуск: Том 86, № 6 (2024)
- Страницы: 727-741
- Раздел: Статьи
- Статья получена: 29.05.2025
- Статья опубликована: 15.12.2024
- URL: https://cijournal.ru/0023-2912/article/view/681011
- DOI: https://doi.org/10.31857/S0023291224060067
- EDN: https://elibrary.ru/VLKGGI
- ID: 681011
Цитировать
Аннотация
Статья посвящена теоретическому исследованию динамического отклика на внешнее поле ансамблей ферромагнитных наночастиц, иммобилизованных в немагнитной среде. Основное внимание работы уделено анализу влияния магнитного взаимодействия частиц на комплексную магнитную восприимчивость композита и интенсивность выделения в нем тепла под действием переменного магнитного поля. Анализ показывает, что величина теплового эффекта немонотонно, с максимумом, зависит от параметра магнитодипольного взаимодействия частиц. Мы надеемся, что этот результат поможет понять физическую причину качественных противоречий между выводами различных исследований о влиянии межчастичных взаимодействий на компоненты комплексной восприимчивости нанодисперсных магнитных композитов и интенсивность генерирования в них тепла под действием переменного поля.
Ключевые слова
Полный текст

Об авторах
А. Ю. Зубарев
Уральский федеральный университет им. Б.Н. Ельцина
Email: Antoniusmagna@yandex.ru
Россия, ул. Ленина, 51, Екатеринбург, 620002
Л. Ю. Искакова
Уральский федеральный университет им. Б.Н. Ельцина
Email: Antoniusmagna@yandex.ru
Россия, ул. Ленина, 51, Екатеринбург, 620002
А. Ю. Мусихин
Уральский федеральный университет им. Б.Н. Ельцина
Автор, ответственный за переписку.
Email: Antoniusmagna@yandex.ru
Россия, ул. Ленина, 51, Екатеринбург, 620002
Список литературы
- Boczkowska A., Awietjan S.F. Tuning active magnetorheological elastomers for damping applications // Materials Science Forum. 2010. V. 766. P. 636–637. https://doi.org/10.4028/www.scientific.net/MSF.636-637.766
- Lopez-Lopez M. T., Scionti G., Oliveira A.C. et al. Generation and characterization of novel magnetic field-responsive biomaterials // PLOS ONE. 2015. https://doi.org/10.1371/journal.pone.0133878
- ira N., Dhagat P., Davidson J. R. A review of magnetic elastomers and their role in soft robotics // Front. Robot. AI. 2020. V. 7. P. 588391. https://doi.org/10.3389/frobt.2020.588391
- Kurlyandskaya G. V., Blyakhman F. A., Makarova E. B. et al. Functional magnetic ferrogels: From biosensors to regenerative medicine // AIP Advances. 2020. V. 10. P. 125128. https://doi.org/10.1063/9.0000021
- Rajan A., Sahu N. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy // J. Nanopart. Res. 2020. V. 22. P. 319. https://doi.org/10.1007/s11051-020-05045-9
- Vilas-Boas V et al. Magnetic hyperthermia for cancer treatment: main parameters affecting the outcome of in vitro and in vivo studies // Molecules. 2020. V. 25. № 12. P. 2874. https://doi.org/10.3390/molecules25122874
- Lingbing Li. Multifunctional hybrid nanogels for medicine. Handbook of materials for nanomedicine. 2020.
- Chung H-J., Parsons A., Zheng L. Magnetically controlled soft robotics utilizing elastomers and gels in actuation: A review // Adv. Intell. Syst. 2021. V. 3. P. 2000186. https://doi.org/10.1002/aisy.202000186
- Kaewruethai T., Laomeephol C., Pan Y., Luckanagul J. Multifunctional polymeric nanogels for biomedical applications // Gels. 2021. V. 7. P. 228. https://doi.org/10.3390/gels7040228
- Sung B., Kim M-H., Abelmann L. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications // Bioeng. Transl. Med. 2021. V. 6. P. e10190. https://doi.org/10.1002/btm2.10190
- M. Imran M, A. M. Affandi., M. M. Alam. et al. Advanced biomedical applications of iron oxide nanostructures based ferrofluids // Nanotechnology. 2021. V. 32. P. 422001. https://doi.org/10.1088/1361-6528/ac137a
- Naghdi M. et al. Magnetic nanocomposites for biomedical applications // Advances in Colloid and Interface Science. 2022. V. 308. P. 102771. https://doi.org/10.1016/j.cis.2022.102771
- Socoliuc V., Avdeev M. V., Kuncser V. et al. Ferrofluids and bio-ferrofluids: looking back and stepping forward // Nanoscale. 2022. V. 14. P. 4786–4886. https://doi.org/10.1039/D1NR05841J
- Montiel Schneider M. G., Martín M. J., Otarola J. et al. Biomedical applications of iron oxide nanoparticles: current insights progress and perspectives // Pharmaceutics. 2022. V. 14. P. 204. https://doi.org/10.3390/pharmaceutics14010204
- X. Liu et.al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy // Theranostics. 2020. V. 10. № 8. P. 3793–3815. https://doi.org/10.7150/thno.40805
- Rajan A., Sahu N.K. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy // J. Nanoparticle Research. 2020. V. 22. P. 319. https://doi.org/10.1007/s11051-020-05045-9
- H.Rodriges et.al. In vivo magnetic nanoparticle hyperthermia: a review on preclinical studies, low-field nanoheaters, noninvasive thermometry and computer simulations for treatment planning // Int. Journal of Hyperthermia. 2020. V. 37. P. 76. https://doi.org/10.1080/02656736.2020.1800831
- Ehsani A., Maha R. S., Shaygan S. et al. A review of the treatment of bone tumours by hyperthermia using magnetic nanoparticles // J. Nanoanalysis. 2022. V. 9. P. 206. https://doi.org/10.22034/jna.2022.1944876.1278
- Sedighi O., Alaghmandfard A., Montazerian M. et al. A critical review of bioceramics for magnetic hyperthermia // J. American Ceramic Society. 2022. V. 105. P. 1723. https://doi.org/10.1111/jace.17861
- Peiravi M., Eslami H., Ansari M. et al. Magnetic hyperthermia: potentials and limitations // J. Indian Chem. Society. 2022. V. 99. P. 100269. https://doi.org/10.1016/j.jics.2021.100269
- Farzanegan Z., Tahmasbi M. Pelvis received dose measurement for trauma patients in multi-field radiographic examinations: A TLD dosimetry study // Proceedings of the ISSSD. 2022. V. 1. P. 12.
- Włodarczyk A., Gorgon S., Radon A., Bajdak-Rusinek K. Magnetite nanoparticles in magnetic hyperthermia and cancer therapies: Challenges and Perspectives // Nanomaterials. 2022. V. 12. P. 1807. https://doi.org/10.3390/nano12111807
- Peeters H., E. M. van Zwol, Brancato L. et al. Systematic review of the registered clinical trials for oncological hyperthermia treatment // Int. Journal of Hyperthermia. 2022. V. 39. № 1. P. 806–812. https://doi.org/10.1080/02656736.2022.2076292
- Rosensweig R.E. Heating magnetic fluid with alternating magnetic field // J. Magn. Magn. Materials. 2002. V. 252. P. 370–374. https://doi.org/10.1016/S0304-8853(02)00706-0
- Poperechny I. S., Raikher Yu. L., Stepanov V. I. Dynamic magnetic hysteresis in single-domain particles with uniaxial anisotropy // Phys. Rev. B. 2010. V. 82. P. 174423. https://doi.org/10.1103/PhysRevB.82.174423
- Guibert C., Dupuis V., Peyre V. et al. Hyperthermia of magnetic nanoparticles: An experimental study of the role of aggregation // J. Phys. Chem. C. 2015. V. 119. P. 28148−28154. https://doi.org/10.1021/acs.jpcc.5b07796
- Beálle G., Corato R. Di, Kolosnjaj-Tabi J. et al. Ultra-magnetic liposomes for MR imaging, targeting, and hyperthermia // Langmuir. 2012. V. 28. P. 11834−11842. https://doi.org/10.1021/la3024716
- Dennis C. L., Jackson A. J., Borchers J. A. et al. The influence of collective behavior on the magnetic and heating properties of iron oxide nanoparticles // J. Appl. Phys. 2008. V. 103. P. 07A319. https://doi.org/10.1063/1.2837647
- Mehdaoui B., Tan R. P., Meffre A. et al. Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results // Physical Review B. 2013. V. 87. P. 174419. https://doi.org/10.1103/PhysRevB.87.174419
- Valdés D. P., Lima E. Jr., Zysler R. D. et al. Modeling the magnetic-hyperthermia response of linear chains of nanoparticles with low anisotropy: A key to improving specific power absorption // Phys. Rev. Appl. 2020. V. 14. № 1. P. 014023. https://doi.org/10.1103/PhysRevApplied.14.014023
- Anand M. Hysteresis in a linear chain of magnetic nanoparticles // J. Appl. Phys. 2020. V. 128. № 2. P. 023903. https://doi.org/10.1063/5.0010217
- Gontijo R.G., Guimarães A.B. Langevin dynamic simulations of magnetic hyperthermia in rotating fields // J. Magn. and Magn. Materials. 2023. V. 565. P. 1701717. https://doi.org/10.1016/j.jmmm.2022.170171
- Zubarev A. Yu. Magnetic hyperthermia in a system of immobilized magnetically interacting particles // Phys. Rev. E. 2019. V. 99. P. 062609. https://doi.org/10.1103/PhysRevE.99.062609
- Zubarev A. Yu., Iskakova L. Yu. Dynamic susceptibility of ferrogels. Effect of interparticle interaction // J. Magn. Magn. Materials. 2023. V. 587. P. 171247. https://doi.org/10.1016/j.jmmm.2023.171247
- Ambarov A. V., Zverev Vl. S., Elfimova E. A. Numerical modeling of the magnetic response of interacting superparamagnetic particles to an ac field with arbitrary amplitude // J. Magn. and Magn. Materials. 2020. V. 497. P. 166010. https://doi.org/10.1088/1361-651X/abbfbb
- Urtizberea A., Natividad E., Arizaga A. et al. Specific absorption rates and magnetic properties of ferrofluids with interaction effects at low concentrations // J. Phys. Chem C. 2010. V. 114. P. 4916. https://doi.org/10.1021/jp912076f
- Gudoshnikov S. A., Liubimov B. Ya., Usov N. A. Hysteresis losses in a dense superparamagnetic nanoparticle assembly // AIP Advances. 2012. V. 2. P. 012143. https://doi.org/10.1063/1.3688084
- Usov N., Serebryakova O., Tarasov V. Interaction effects in assembly of magnetic nanoparticles // Nanoscale Res. Lett. 2017. V. 12. P. 489. https://doi.org/10.1186/s11671-017-2263-x
- Martinez-Boubeta K. et al. Adjustable hyperthermia response of self-assembled ferromagnetic Fe-MgO core–shell nanoparticles by tuning dipole–dipole interactions // Adv. Func. Mater. 2012. V. 22. P. 3737. https://doi.org/10.1002/adfm.201200307
- Périgo E. A., Hemrey G., Sandre O. et al. Fundamentals and advances in magnetic hyperthermia // Appl. Phys. Rev. 2015. V. 2. P. 041302. https://doi.org/10.1063/1.4935688
- Dutz S., Kettering M., Hilger I. et al. Magnetic multicore nanoparticles for hyperthermia—influence of particle immobilization in tumour tissue on magnetic properties // Nanotechnology. 2011. V. 22. P. 265102. https://doi.org/10.1088/0957-4484/22/26/265102
- Odenbach S. Magnetoviscous effect in ferrofluids. berlin-heidelberg: Springer-verlag. 2002.
- Lartigue L. et al. Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties // J. Am. Chem. Soc. 2011. V. 133. P. 10459–10472. https://doi.org/10.1021/ja111448t
- Tong S., Quinto C. A., Zhang L. et al. Size-dependent heating of magnetic. Iron oxide nanoparticles // ACS Nano. 2017. V. 11. P. 6808–6816. https://doi.org/10.1021/acsnano.7b01762
- de Gennes P. G., Pincus P. A. Pair correlations in a ferromagnetic colloid // Physics Kondens. Materials. 1970. V. 11. P. 189. https://doi.org/10.1007/BF02422637
- Buyevich Yu. A., Ivanov A.O. Equilibrium properties of ferrocolloids // Physica A. 1992. V. 190. P. 276. https://doi.org/10.1016/0378-4371(92)90037-Q
- Kalmykov Y. P., Titov S. V., Byrne D. J. et al. Dipole- dipole and exchange interaction effects on the magnetization relaxation of two macrospins: compared // J.Magn. Magn. Materials. 2020. V. 507. P. 166814. https://doi.org/10.1016/j.jmmm.2020.166814
- Brown W. F. Thermal fluctuations of a single-domain particle // J. Phys. Rev. 1963. V. 130. P. 1677. https://doi.org/10.1103/PhysRev.130.167
Дополнительные файлы
