Динамическая восприимчивость ансамблей иммобилизованных магнитных наночастиц

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Статья посвящена теоретическому исследованию динамического отклика на внешнее поле ансамблей ферромагнитных наночастиц, иммобилизованных в немагнитной среде. Основное внимание работы уделено анализу влияния магнитного взаимодействия частиц на комплексную магнитную восприимчивость композита и интенсивность выделения в нем тепла под действием переменного магнитного поля. Анализ показывает, что величина теплового эффекта немонотонно, с максимумом, зависит от параметра магнитодипольного взаимодействия частиц. Мы надеемся, что этот результат поможет понять физическую причину качественных противоречий между выводами различных исследований о влиянии межчастичных взаимодействий на компоненты комплексной восприимчивости нанодисперсных магнитных композитов и интенсивность генерирования в них тепла под действием переменного поля.

Полный текст

Доступ закрыт

Об авторах

А. Ю. Зубарев

Уральский федеральный университет им. Б.Н. Ельцина

Email: Antoniusmagna@yandex.ru
Россия, ул. Ленина, 51, Екатеринбург, 620002

Л. Ю. Искакова

Уральский федеральный университет им. Б.Н. Ельцина

Email: Antoniusmagna@yandex.ru
Россия, ул. Ленина, 51, Екатеринбург, 620002

А. Ю. Мусихин

Уральский федеральный университет им. Б.Н. Ельцина

Автор, ответственный за переписку.
Email: Antoniusmagna@yandex.ru
Россия, ул. Ленина, 51, Екатеринбург, 620002

Список литературы

  1. Boczkowska A., Awietjan S.F. Tuning active magnetorheological elastomers for damping applications // Materials Science Forum. 2010. V. 766. P. 636–637. https://doi.org/10.4028/www.scientific.net/MSF.636-637.766
  2. Lopez-Lopez M. T., Scionti G., Oliveira A.C. et al. Generation and characterization of novel magnetic field-responsive biomaterials // PLOS ONE. 2015. https://doi.org/10.1371/journal.pone.0133878
  3. ira N., Dhagat P., Davidson J. R. A review of magnetic elastomers and their role in soft robotics // Front. Robot. AI. 2020. V. 7. P. 588391. https://doi.org/10.3389/frobt.2020.588391
  4. Kurlyandskaya G. V., Blyakhman F. A., Makarova E. B. et al. Functional magnetic ferrogels: From biosensors to regenerative medicine // AIP Advances. 2020. V. 10. P. 125128. https://doi.org/10.1063/9.0000021
  5. Rajan A., Sahu N. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy // J. Nanopart. Res. 2020. V. 22. P. 319. https://doi.org/10.1007/s11051-020-05045-9
  6. Vilas-Boas V et al. Magnetic hyperthermia for cancer treatment: main parameters affecting the outcome of in vitro and in vivo studies // Molecules. 2020. V. 25. № 12. P. 2874. https://doi.org/10.3390/molecules25122874
  7. Lingbing Li. Multifunctional hybrid nanogels for medicine. Handbook of materials for nanomedicine. 2020.
  8. Chung H-J., Parsons A., Zheng L. Magnetically controlled soft robotics utilizing elastomers and gels in actuation: A review // Adv. Intell. Syst. 2021. V. 3. P. 2000186. https://doi.org/10.1002/aisy.202000186
  9. Kaewruethai T., Laomeephol C., Pan Y., Luckanagul J. Multifunctional polymeric nanogels for biomedical applications // Gels. 2021. V. 7. P. 228. https://doi.org/10.3390/gels7040228
  10. Sung B., Kim M-H., Abelmann L. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications // Bioeng. Transl. Med. 2021. V. 6. P. e10190. https://doi.org/10.1002/btm2.10190
  11. M. Imran M, A. M. Affandi., M. M. Alam. et al. Advanced biomedical applications of iron oxide nanostructures based ferrofluids // Nanotechnology. 2021. V. 32. P. 422001. https://doi.org/10.1088/1361-6528/ac137a
  12. Naghdi M. et al. Magnetic nanocomposites for biomedical applications // Advances in Colloid and Interface Science. 2022. V. 308. P. 102771. https://doi.org/10.1016/j.cis.2022.102771
  13. Socoliuc V., Avdeev M. V., Kuncser V. et al. Ferrofluids and bio-ferrofluids: looking back and stepping forward // Nanoscale. 2022. V. 14. P. 4786–4886. https://doi.org/10.1039/D1NR05841J
  14. Montiel Schneider M. G., Martín M. J., Otarola J. et al. Biomedical applications of iron oxide nanoparticles: current insights progress and perspectives // Pharmaceutics. 2022. V. 14. P. 204. https://doi.org/10.3390/pharmaceutics14010204
  15. X. Liu et.al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy // Theranostics. 2020. V. 10. № 8. P. 3793–3815. https://doi.org/10.7150/thno.40805
  16. Rajan A., Sahu N.K. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy // J. Nanoparticle Research. 2020. V. 22. P. 319. https://doi.org/10.1007/s11051-020-05045-9
  17. H.Rodriges et.al. In vivo magnetic nanoparticle hyperthermia: a review on preclinical studies, low-field nanoheaters, noninvasive thermometry and computer simulations for treatment planning // Int. Journal of Hyperthermia. 2020. V. 37. P. 76. https://doi.org/10.1080/02656736.2020.1800831
  18. Ehsani A., Maha R. S., Shaygan S. et al. A review of the treatment of bone tumours by hyperthermia using magnetic nanoparticles // J. Nanoanalysis. 2022. V. 9. P. 206. https://doi.org/10.22034/jna.2022.1944876.1278
  19. Sedighi O., Alaghmandfard A., Montazerian M. et al. A critical review of bioceramics for magnetic hyperthermia // J. American Ceramic Society. 2022. V. 105. P. 1723. https://doi.org/10.1111/jace.17861
  20. Peiravi M., Eslami H., Ansari M. et al. Magnetic hyperthermia: potentials and limitations // J. Indian Chem. Society. 2022. V. 99. P. 100269. https://doi.org/10.1016/j.jics.2021.100269
  21. Farzanegan Z., Tahmasbi M. Pelvis received dose measurement for trauma patients in multi-field radiographic examinations: A TLD dosimetry study // Proceedings of the ISSSD. 2022. V. 1. P. 12.
  22. Włodarczyk A., Gorgon S., Radon A., Bajdak-Rusinek K. Magnetite nanoparticles in magnetic hyperthermia and cancer therapies: Challenges and Perspectives // Nanomaterials. 2022. V. 12. P. 1807. https://doi.org/10.3390/nano12111807
  23. Peeters H., E. M. van Zwol, Brancato L. et al. Systematic review of the registered clinical trials for oncological hyperthermia treatment // Int. Journal of Hyperthermia. 2022. V. 39. № 1. P. 806–812. https://doi.org/10.1080/02656736.2022.2076292
  24. Rosensweig R.E. Heating magnetic fluid with alternating magnetic field // J. Magn. Magn. Materials. 2002. V. 252. P. 370–374. https://doi.org/10.1016/S0304-8853(02)00706-0
  25. Poperechny I. S., Raikher Yu. L., Stepanov V. I. Dynamic magnetic hysteresis in single-domain particles with uniaxial anisotropy // Phys. Rev. B. 2010. V. 82. P. 174423. https://doi.org/10.1103/PhysRevB.82.174423
  26. Guibert C., Dupuis V., Peyre V. et al. Hyperthermia of magnetic nanoparticles: An experimental study of the role of aggregation // J. Phys. Chem. C. 2015. V. 119. P. 28148−28154. https://doi.org/10.1021/acs.jpcc.5b07796
  27. Beálle G., Corato R. Di, Kolosnjaj-Tabi J. et al. Ultra-magnetic liposomes for MR imaging, targeting, and hyperthermia // Langmuir. 2012. V. 28. P. 11834−11842. https://doi.org/10.1021/la3024716
  28. Dennis C. L., Jackson A. J., Borchers J. A. et al. The influence of collective behavior on the magnetic and heating properties of iron oxide nanoparticles // J. Appl. Phys. 2008. V. 103. P. 07A319. https://doi.org/10.1063/1.2837647
  29. Mehdaoui B., Tan R. P., Meffre A. et al. Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results // Physical Review B. 2013. V. 87. P. 174419. https://doi.org/10.1103/PhysRevB.87.174419
  30. Valdés D. P., Lima E. Jr., Zysler R. D. et al. Modeling the magnetic-hyperthermia response of linear chains of nanoparticles with low anisotropy: A key to improving specific power absorption // Phys. Rev. Appl. 2020. V. 14. № 1. P. 014023. https://doi.org/10.1103/PhysRevApplied.14.014023
  31. Anand M. Hysteresis in a linear chain of magnetic nanoparticles // J. Appl. Phys. 2020. V. 128. № 2. P. 023903. https://doi.org/10.1063/5.0010217
  32. Gontijo R.G., Guimarães A.B. Langevin dynamic simulations of magnetic hyperthermia in rotating fields // J. Magn. and Magn. Materials. 2023. V. 565. P. 1701717. https://doi.org/10.1016/j.jmmm.2022.170171
  33. Zubarev A. Yu. Magnetic hyperthermia in a system of immobilized magnetically interacting particles // Phys. Rev. E. 2019. V. 99. P. 062609. https://doi.org/10.1103/PhysRevE.99.062609
  34. Zubarev A. Yu., Iskakova L. Yu. Dynamic susceptibility of ferrogels. Effect of interparticle interaction // J. Magn. Magn. Materials. 2023. V. 587. P. 171247. https://doi.org/10.1016/j.jmmm.2023.171247
  35. Ambarov A. V., Zverev Vl. S., Elfimova E. A. Numerical modeling of the magnetic response of interacting superparamagnetic particles to an ac field with arbitrary amplitude // J. Magn. and Magn. Materials. 2020. V. 497. P. 166010. https://doi.org/10.1088/1361-651X/abbfbb
  36. Urtizberea A., Natividad E., Arizaga A. et al. Specific absorption rates and magnetic properties of ferrofluids with interaction effects at low concentrations // J. Phys. Chem C. 2010. V. 114. P. 4916. https://doi.org/10.1021/jp912076f
  37. Gudoshnikov S. A., Liubimov B. Ya., Usov N. A. Hysteresis losses in a dense superparamagnetic nanoparticle assembly // AIP Advances. 2012. V. 2. P. 012143. https://doi.org/10.1063/1.3688084
  38. Usov N., Serebryakova O., Tarasov V. Interaction effects in assembly of magnetic nanoparticles // Nanoscale Res. Lett. 2017. V. 12. P. 489. https://doi.org/10.1186/s11671-017-2263-x
  39. Martinez-Boubeta K. et al. Adjustable hyperthermia response of self-assembled ferromagnetic Fe-MgO core–shell nanoparticles by tuning dipole–dipole interactions // Adv. Func. Mater. 2012. V. 22. P. 3737. https://doi.org/10.1002/adfm.201200307
  40. Périgo E. A., Hemrey G., Sandre O. et al. Fundamentals and advances in magnetic hyperthermia // Appl. Phys. Rev. 2015. V. 2. P. 041302. https://doi.org/10.1063/1.4935688
  41. Dutz S., Kettering M., Hilger I. et al. Magnetic multicore nanoparticles for hyperthermia—influence of particle immobilization in tumour tissue on magnetic properties // Nanotechnology. 2011. V. 22. P. 265102. https://doi.org/10.1088/0957-4484/22/26/265102
  42. Odenbach S. Magnetoviscous effect in ferrofluids. berlin-heidelberg: Springer-verlag. 2002.
  43. Lartigue L. et al. Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties // J. Am. Chem. Soc. 2011. V. 133. P. 10459–10472. https://doi.org/10.1021/ja111448t
  44. Tong S., Quinto C. A., Zhang L. et al. Size-dependent heating of magnetic. Iron oxide nanoparticles // ACS Nano. 2017. V. 11. P. 6808–6816. https://doi.org/10.1021/acsnano.7b01762
  45. de Gennes P. G., Pincus P. A. Pair correlations in a ferromagnetic colloid // Physics Kondens. Materials. 1970. V. 11. P. 189. https://doi.org/10.1007/BF02422637
  46. Buyevich Yu. A., Ivanov A.O. Equilibrium properties of ferrocolloids // Physica A. 1992. V. 190. P. 276. https://doi.org/10.1016/0378-4371(92)90037-Q
  47. Kalmykov Y. P., Titov S. V., Byrne D. J. et al. Dipole- dipole and exchange interaction effects on the magnetization relaxation of two macrospins: compared // J.Magn. Magn. Materials. 2020. V. 507. P. 166814. https://doi.org/10.1016/j.jmmm.2020.166814
  48. Brown W. F. Thermal fluctuations of a single-domain particle // J. Phys. Rev. 1963. V. 130. P. 1677. https://doi.org/10.1103/PhysRev.130.167

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Иллюстрация двух взаимодействующих магнитных частиц и используемой системы координат. Толстые вертикальные линии – оси легкого намагничивания частиц; µ1,2 – единичные вектора, направленные вдоль магнитных моментов частиц.

Скачать (38KB)
3. Рис. 2. Схематическая карта состояний пары частиц в плоскости (θ1,θ2). Внутренние штриховые линии приближенно иллюстрируют барьеры между потенциальными «долинами» с локальными минимумами (8). На карте j1,2 – плотности потоков вероятности перехода системы через потенциальные барьеры между потенциальными долинами. Стрелки иллюстрируют направления этих потоков.

Скачать (36KB)
4. Рис. 3. Реальная ⟨χ′⟩ и мнимая ⟨χ′′⟩ части редуцированной комплексной восприимчивости композита как функции от частоты поля ω. Объемная концентрация частиц Φ = 0.05; безразмерный параметр магнитной анизотропии частицы σ = 10. Цифры возле кривых – значения параметра l; кривая l = 0 соответствует невзаимодействющим частицам.

Скачать (65KB)
5. Рис. 4. То же, что на рис. 3 для безразмерной интенсивности p выделения тепла частицей.

Скачать (47KB)
6. Рис. 5. Безразмерная интенсивность диссипации энергии р как функция параметра λ магнитного взаимодействия частиц. Цифры у кривых 1 и 2 соответствуют ωτ0 = 0.5 и 0.75 соответственно. Φ = 0.05; σ = 10.

Скачать (39KB)
7. Приложение А
Скачать (433KB)
8. Приложение Б
Скачать (286KB)

© Российская академия наук, 2024