Determination of the limits for quantification of the degree of internalization of γ-Fe2O3 nanoparticles by cultures of human mesenchymal stromal cells
- Autores: Burban E.A.1, Fadeyev F.A.2,3, Safronov A.P.1,4, Blyakhman F.A.1,3, Terziyan T.V.1, Neznakhin D.S.1, Yushkov A.A.1, Kurlyandskaya G.V.1
-
Afiliações:
- Уральский федеральный университет
- Институт медицинских клеточных технологий
- Уральский государственный медицинский университет
- Институт электрофизики Уральского отделения РАН
- Edição: Volume 86, Nº 6 (2024)
- Páginas: 687-699
- Seção: Articles
- ##submission.dateSubmitted##: 29.05.2025
- ##submission.datePublished##: 15.12.2024
- URL: https://cijournal.ru/0023-2912/article/view/681002
- DOI: https://doi.org/10.31857/S0023291224060023
- EDN: https://elibrary.ru/VLRUNM
- ID: 681002
Citar
Resumo
A culture of human bone marrow mesenchymal stromal cells (MSCs) was investigated in the present work. Cell culture was grown as a monolayer in a nutrient medium into which a stabilized aqueous suspension of magnetic nanoparticles (MNPs) of maghemite (γ-Fe2O3) were added. MNPs were synthesized by the electrophysical method of laser target evaporation. A method has been proposed for stabilizing a suspension in a nutrient medium with high ionic strength. A qualitative assessment of the possibility of internalization (either by fixing on the cell membrane or by penetrating into the cell space) of MNPs with human MSCs was carried out using optical, scanning and transmission electron microscopy and SQUID magnetometry. Comparative analysis of the structure and magnetic properties was made, and assumptions about the features of MNP internalization in this system were provided. It has been established that the limiting value for MNPs that can reliably be analyzed in a biological sample of the type under consideration with nanoparticles of this type is of about 0.005 mg. It was found that in the considered range of initial concentrations of magnetic nanoparticles in biological samples based on human MSCs, the level of accumulation of magnetic nanoparticles in cell cultures depends on their concentration.
Texto integral

Sobre autores
E. Burban
Уральский федеральный университет
Autor responsável pela correspondência
Email: e.a.mikhnevich@urfu.ru
Rússia, ул. Мира, 19, Екатеринбург, 620002
F. Fadeyev
Институт медицинских клеточных технологий; Уральский государственный медицинский университет
Email: e.a.mikhnevich@urfu.ru
Rússia, ул. Карла Маркса, 22А, Екатеринбург, 620026; ул. Репина, 3, Екатеринбург, 620028
A. Safronov
Уральский федеральный университет; Институт электрофизики Уральского отделения РАН
Email: e.a.mikhnevich@urfu.ru
Rússia, ул. Мира, 19, Екатеринбург, 620002; ул. Амундсена, 106, Екатеринбург, 620016
F. Blyakhman
Уральский федеральный университет; Уральский государственный медицинский университет
Email: e.a.mikhnevich@urfu.ru
Rússia, ул. Мира, 19, Екатеринбург, 620002; ул. Репина, 3, Екатеринбург, 620028
T. Terziyan
Уральский федеральный университет
Email: e.a.mikhnevich@urfu.ru
Rússia, ул. Мира, 19, Екатеринбург, 620002
D. Neznakhin
Уральский федеральный университет
Email: e.a.mikhnevich@urfu.ru
Rússia, ул. Мира, 19, Екатеринбург, 620002
A. Yushkov
Уральский федеральный университет
Email: e.a.mikhnevich@urfu.ru
Rússia, ул. Мира, 19, Екатеринбург, 620002
G. Kurlyandskaya
Уральский федеральный университет
Email: e.a.mikhnevich@urfu.ru
Rússia, ул. Мира, 19, Екатеринбург, 620002
Bibliografia
- Pankhurst Q.A., Connolly A.J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine // J. Phys. D. 2003. V. 36. № 13. P. R167. https://doi.org/10.1088/0022-3727/36/13/201
- Фролов Г.И., Бачина О.И., Завьялова М.М., Равочкин С.И. Магнитные свойства наночастиц и Зd-металлов // Журнал Технической Физики. 2008. Т. 78. № 8. С. 101–106
- Курляндская Г.В., Сафронов А.П., Щербинин С.В., Бекетов И.В., Бляхман Ф.А., Макарова Э.Б., Корч М.А., Свалов А.В. Магнитные наночастицы, полученные электрофизическими методами: фокус на биомедицинские приложения // Физика твердого тела. 2021. Т. 63. № 9. C. 1290–1304.https://doi.org/10.21883/FTT.2021.09.51255.17H
- Камзин А.С. Мессбауэровские исследования магнитных наночастиц Fe и для гипертермических применений // Физика тв. тела. 2016. Т. 58. № 3. С. 519–525.
- Geilich B.M., Gelfat I., Sridhar S., van de Ven A.L., Webster T.J. Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication // Biomaterials. 2017. V. 119. P. 78–85. https://doi.org/10.1016/j.biomaterials.2016.12.011
- Khawja Ansari S.A.M., Ficiara E., Ruffinatti F.A., Stura I., Argenziano M., Abollino O., Cavalli R., Guiot C., D’Agata F.. Magnetic Iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system // Materials. 2019. V. 12. № 3. P. 465. https://doi.org/10.3390/ma12030465
- Dvorak H.F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing // N. Engl. J. Med. 1986. V. 315, P. 1650–1659. https://doi.org/10.1056/nejm198612253152606
- Grossman J.H., McNeil S.E. Nanotechnology in Cancer Medicine // Phys. Today. 2012. V. 65. № 8. P. 38–42.https://doi.org/10.1063/PT.3.1678
- Kurlyandskaya G.V., Litvinova L.S., Safronov A.P., Schupletsova V.V., Tyukova I.S., Khaziakhmatova O.G., Slepchenko G.B., Yurova K.A., Cherempey E.G., Kulesh N.A., Andrade R., Beketov I.V., Khlusov I.A. Water-based suspensions of iron oxide nanoparticles with electrostatic or steric stabilization by chitosan: fabrication, characterization and biocompatibility // Sensors. 2017. V. 17. № 11. P. 2605. https://doi.org/10.3390/s17112605
- Beketov I.V., Safronov A.P., Medvedev A.I., Alonso J., Kurlyandskaya G.V., Bhagat S.M. Iron oxide nanoparticles fabricated by electric explosion of wire: focus on magnetic nanofluids // AIP Adv. 2012. V. 2. P. 022154.https://doi.org/10.1063/1.4730405
- Kotov Yu.A. Electric explosion of wires as a method for preparation of nanopowders // J. Nanopart. Res. 2003. V. 5. № 5. P. 539–550. https://doi.org/10.1023/B:NANO.0000006069.45073.0b
- Melnikov G.Yu., Lepalovskij V.N., Svalov A.V., Safronov A.P., Kurlyandskaya G.V. Magnetoimpedance thin film sensor for detecting of stray fields of magnetic particles in blood vessel // Sensors. 2021. V. 21. P. 3621. https://doi.org/10.3390/s21113621
- Prilepskii A.Y., Fakhardo A.F., Drozdov A.S., Vinogradov V.V., Dudanov I.P., Shtil A.A., Bel’tyukov P.P., Shibeko A.M., Koltsova E.M., Nechipurenko D.Y., Vinogradov V.V. Urokinase-conjugated magnetite nanoparticles as a promising drug delivery system for targeted thrombolysis: synthesis and preclinical evaluation // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 36764–36775. https://doi.org/10.1021/acsami.8b14790
- Graham L., Orenstein J.M. Processing tissue and cells for transmission electron microscopy in diagnostic pathology and research // Nat. Protoc. 2007. V. 2. P. 2439–2450. https://doi.org/10.1038/nprot.2007.304
- Kulesh N.A., Novoselova I.P., Safronov A.P., Beketov I.V., Samatov O.M., Kurlyandskaya G.V., Morozova M., Denisova T.P. Total reflection x-ray fluorescence spectroscopy as a tool for evaluation of iron concentration in ferrofluids and yeast samples // J. Magn. Magn. Mater. 2016. V. 415. P. 39–44. https://doi.org/10.1016/j.jmmm.2016.01.095
- Safronov A.P., Beketov I.V., Komogortsev S.V., Kurlyandskaya G.V., Medvedev A.I., Leiman D.V., Larranaga A., Bhagat S.M. Spherical magnetic nanoparticles fabricated by laser target evaporation // AIP Adv. 2013. V. 3. P. 052135. https://doi.org/10.1063/1.4808368
- Zborowski M., Chalmers J. Magnetic Cell Separation (Elsevier, 2008), P. 486.
- Novoselova I.P., Safronov A.P., Samatov O.M., Beketov I.V., Medvedev A.I., Kurlyandskaya G.V. Water based suspensions of iron oxide obtained by laser target evaporation for biomedical applications // J. Magn. Magn. Mater. 2016. V. 415. P. 35–38. https://doi.org/10.1016/j.jmmm.2016.01.093
- Kurlyandskaya G.V., Novoselova Iu.P., Schuplet-sova V.V., Andrade R., Dunec N.A., Litvinova L.S.,Safronov A.P., Yurova K.A., Kulesh N.A., Dzyuman A.N., Khlusov I.A. Nanoparticles for magnetic biosensing systems // Journal of Magnetism and Magnetic Materials. 2017. V. 431. P. 249–254. https://doi.org/101016/j.jmmm.2016.07.056
- Safronov A.P., Beketov I.V., Tyukova I.S., Medvedev A.I., Samatov O.M., Murzakaev A.M. Magnetic nanoparticles for biophysical applications synthesized by high-power physical dispersion // J. Magn. Magn. Mat. 2015. V. 383. P. 281–287. https://doi.org/10.1016/j.jmmm.2014.11.016
- Tscharnuter W.W. Photon correlation spectroscopy in particle sizing // Encyclopedia of Analytical Chemistry, Ed. by R. A. Meyers (JohnWiley & Sons Ltd., 2001). P. 5469. https://doi.org/10.1002/9780470027318.a1512
Arquivos suplementares
