Determination of the limits for quantification of the degree of internalization of γ-Fe2O3 nanoparticles by cultures of human mesenchymal stromal cells

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A culture of human bone marrow mesenchymal stromal cells (MSCs) was investigated in the present work. Cell culture was grown as a monolayer in a nutrient medium into which a stabilized aqueous suspension of magnetic nanoparticles (MNPs) of maghemite (γ-Fe2O3) were added. MNPs were synthesized by the electrophysical method of laser target evaporation. A method has been proposed for stabilizing a suspension in a nutrient medium with high ionic strength. A qualitative assessment of the possibility of internalization (either by fixing on the cell membrane or by penetrating into the cell space) of MNPs with human MSCs was carried out using optical, scanning and transmission electron microscopy and SQUID magnetometry. Comparative analysis of the structure and magnetic properties was made, and assumptions about the features of MNP internalization in this system were provided. It has been established that the limiting value for MNPs that can reliably be analyzed in a biological sample of the type under consideration with nanoparticles of this type is of about 0.005 mg. It was found that in the considered range of initial concentrations of magnetic nanoparticles in biological samples based on human MSCs, the level of accumulation of magnetic nanoparticles in cell cultures depends on their concentration.

Texto integral

Acesso é fechado

Sobre autores

E. Burban

Уральский федеральный университет

Autor responsável pela correspondência
Email: e.a.mikhnevich@urfu.ru
Rússia, ул. Мира, 19, Екатеринбург, 620002

F. Fadeyev

Институт медицинских клеточных технологий; Уральский государственный медицинский университет

Email: e.a.mikhnevich@urfu.ru
Rússia, ул. Карла Маркса, 22А, Екатеринбург, 620026; ул. Репина, 3, Екатеринбург, 620028

A. Safronov

Уральский федеральный университет; Институт электрофизики Уральского отделения РАН

Email: e.a.mikhnevich@urfu.ru
Rússia, ул. Мира, 19, Екатеринбург, 620002; ул. Амундсена, 106, Екатеринбург, 620016

F. Blyakhman

Уральский федеральный университет; Уральский государственный медицинский университет

Email: e.a.mikhnevich@urfu.ru
Rússia, ул. Мира, 19, Екатеринбург, 620002; ул. Репина, 3, Екатеринбург, 620028

T. Terziyan

Уральский федеральный университет

Email: e.a.mikhnevich@urfu.ru
Rússia, ул. Мира, 19, Екатеринбург, 620002

D. Neznakhin

Уральский федеральный университет

Email: e.a.mikhnevich@urfu.ru
Rússia, ул. Мира, 19, Екатеринбург, 620002

A. Yushkov

Уральский федеральный университет

Email: e.a.mikhnevich@urfu.ru
Rússia, ул. Мира, 19, Екатеринбург, 620002

G. Kurlyandskaya

Уральский федеральный университет

Email: e.a.mikhnevich@urfu.ru
Rússia, ул. Мира, 19, Екатеринбург, 620002

Bibliografia

  1. Pankhurst Q.A., Connolly A.J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine // J. Phys. D. 2003. V. 36. № 13. P. R167. https://doi.org/10.1088/0022-3727/36/13/201
  2. Фролов Г.И., Бачина О.И., Завьялова М.М., Равочкин С.И. Магнитные свойства наночастиц и Зd-металлов // Журнал Технической Физики. 2008. Т. 78. № 8. С. 101–106
  3. Курляндская Г.В., Сафронов А.П., Щербинин С.В., Бекетов И.В., Бляхман Ф.А., Макарова Э.Б., Корч М.А., Свалов А.В. Магнитные наночастицы, полученные электрофизическими методами: фокус на биомедицинские приложения // Физика твердого тела. 2021. Т. 63. № 9. C. 1290–1304.https://doi.org/10.21883/FTT.2021.09.51255.17H
  4. Камзин А.С. Мессбауэровские исследования магнитных наночастиц Fe и Fe 3 O 4 для гипертермических применений // Физика тв. тела. 2016. Т. 58. № 3. С. 519–525.
  5. Geilich B.M., Gelfat I., Sridhar S., van de Ven A.L., Webster T.J. Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication // Biomaterials. 2017. V. 119. P. 78–85. https://doi.org/10.1016/j.biomaterials.2016.12.011
  6. Khawja Ansari S.A.M., Ficiara E., Ruffinatti F.A., Stura I., Argenziano M., Abollino O., Cavalli R., Guiot C., D’Agata F.. Magnetic Iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system // Materials. 2019. V. 12. № 3. P. 465. https://doi.org/10.3390/ma12030465
  7. Dvorak H.F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing // N. Engl. J. Med. 1986. V. 315, P. 1650–1659. https://doi.org/10.1056/nejm198612253152606
  8. Grossman J.H., McNeil S.E. Nanotechnology in Cancer Medicine // Phys. Today. 2012. V. 65. № 8. P. 38–42.https://doi.org/10.1063/PT.3.1678
  9. Kurlyandskaya G.V., Litvinova L.S., Safronov A.P., Schupletsova V.V., Tyukova I.S., Khaziakhmatova O.G., Slepchenko G.B., Yurova K.A., Cherempey E.G., Kulesh N.A., Andrade R., Beketov I.V., Khlusov I.A. Water-based suspensions of iron oxide nanoparticles with electrostatic or steric stabilization by chitosan: fabrication, characterization and biocompatibility // Sensors. 2017. V. 17. № 11. P. 2605. https://doi.org/10.3390/s17112605
  10. Beketov I.V., Safronov A.P., Medvedev A.I., Alonso J., Kurlyandskaya G.V., Bhagat S.M. Iron oxide nanoparticles fabricated by electric explosion of wire: focus on magnetic nanofluids // AIP Adv. 2012. V. 2. P. 022154.https://doi.org/10.1063/1.4730405
  11. Kotov Yu.A. Electric explosion of wires as a method for preparation of nanopowders // J. Nanopart. Res. 2003. V. 5. № 5. P. 539–550. https://doi.org/10.1023/B:NANO.0000006069.45073.0b
  12. Melnikov G.Yu., Lepalovskij V.N., Svalov A.V., Safronov A.P., Kurlyandskaya G.V. Magnetoimpedance thin film sensor for detecting of stray fields of magnetic particles in blood vessel // Sensors. 2021. V. 21. P. 3621. https://doi.org/10.3390/s21113621
  13. Prilepskii A.Y., Fakhardo A.F., Drozdov A.S., Vinogradov V.V., Dudanov I.P., Shtil A.A., Bel’tyukov P.P., Shibeko A.M., Koltsova E.M., Nechipurenko D.Y., Vinogradov V.V. Urokinase-conjugated magnetite nanoparticles as a promising drug delivery system for targeted thrombolysis: synthesis and preclinical evaluation // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 36764–36775. https://doi.org/10.1021/acsami.8b14790
  14. Graham L., Orenstein J.M. Processing tissue and cells for transmission electron microscopy in diagnostic pathology and research // Nat. Protoc. 2007. V. 2. P. 2439–2450. https://doi.org/10.1038/nprot.2007.304
  15. Kulesh N.A., Novoselova I.P., Safronov A.P., Beketov I.V., Samatov O.M., Kurlyandskaya G.V., Morozova M., Denisova T.P. Total reflection x-ray fluorescence spectroscopy as a tool for evaluation of iron concentration in ferrofluids and yeast samples // J. Magn. Magn. Mater. 2016. V. 415. P. 39–44. https://doi.org/10.1016/j.jmmm.2016.01.095
  16. Safronov A.P., Beketov I.V., Komogortsev S.V., Kurlyandskaya G.V., Medvedev A.I., Leiman D.V., Larranaga A., Bhagat S.M. Spherical magnetic nanoparticles fabricated by laser target evaporation // AIP Adv. 2013. V. 3. P. 052135. https://doi.org/10.1063/1.4808368
  17. Zborowski M., Chalmers J. Magnetic Cell Separation (Elsevier, 2008), P. 486.
  18. Novoselova I.P., Safronov A.P., Samatov O.M., Beketov I.V., Medvedev A.I., Kurlyandskaya G.V. Water based suspensions of iron oxide obtained by laser target evaporation for biomedical applications // J. Magn. Magn. Mater. 2016. V. 415. P. 35–38. https://doi.org/10.1016/j.jmmm.2016.01.093
  19. Kurlyandskaya G.V., Novoselova Iu.P., Schuplet-sova V.V., Andrade R., Dunec N.A., Litvinova L.S.,Safronov A.P., Yurova K.A., Kulesh N.A., Dzyuman A.N., Khlusov I.A. Nanoparticles for magnetic biosensing systems // Journal of Magnetism and Magnetic Materials. 2017. V. 431. P. 249–254. https://doi.org/101016/j.jmmm.2016.07.056
  20. Safronov A.P., Beketov I.V., Tyukova I.S., Medvedev A.I., Samatov O.M., Murzakaev A.M. Magnetic nanoparticles for biophysical applications synthesized by high-power physical dispersion // J. Magn. Magn. Mat. 2015. V. 383. P. 281–287. https://doi.org/10.1016/j.jmmm.2014.11.016
  21. Tscharnuter W.W. Photon correlation spectroscopy in particle sizing // Encyclopedia of Analytical Chemistry, Ed. by R. A. Meyers (JohnWiley & Sons Ltd., 2001). P. 5469. https://doi.org/10.1002/9780470027318.a1512

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. General view of a Petri dish with a dried sample of MSC culture at a concentration of MNPs of 256 μg/cm2 and markings by zones. Zone "2" is shown after washing off the biomaterial.

Baixar (911KB)
3. Fig. 2. TEM images of MNP suspension (a) and microdiffraction pattern confirming the phase composition: γ-Fe2O3 (b). Size distribution of MNPs constructed based on TEM data for images of 1005 particles (c)

Baixar (429KB)
4. Fig. 3. Distribution of particles/aggregates in a suspension of maghemite nanoparticles stabilized with sodium citrate. 1 – in water; 2 – in DMEM nutrient medium.

Baixar (104KB)
5. Fig. 4. Average hydrodynamic diameter of particles/aggregates upon introduction into DMEM nutrient medium of a suspension of maghemite nanoparticles stabilized with sodium citrate and ammonium polymethacrylate using a two-stage method, depending on the time of preliminary holding of the suspension at 25°C.

Baixar (137KB)
6. Fig. 5. General view of the culture of human mesenchymal stromal cells on culture plastic.

Baixar (174KB)
7. Fig. 6. MSC cell culture with MNP suspension at a concentration of 1 μg/cm2 after washing (a, c), MSC cell culture with MNP suspension at a concentration of 256 μg/cm2 after washing (b, d). The upper row is in 2D, and the lower row is in 3D representation. All units on the horizontal axes are μm.

Baixar (969KB)
8. Fig. 7. TEM image of a biological sample representing an ethanol wash of a MSC cell culture with a MNP suspension at a concentration of 256 μg/cm2: parts (a) and (b) show different areas where MNPs are either inside or on the surface of MSC cells. In the case of a typical area shown in photograph (c), this is an MNP agglomerate formed in the culture medium during the same study.

Baixar (953KB)
9. Fig. 8. Scheme illustrating the process of interaction of MNPs added to the nutrient medium and the cell culture. (a) coagulation of MNPs near the cell membrane; (b) internalization of adsorbed MNPs through the cell membrane into the cytoplasm.

Baixar (207KB)
10. Fig. 9. Magnetization curve of the polycarbonate capsule (a). Dependence of the magnetization value of the maghemite nanoparticle ensemble on the mass of the dried suspension sample with an initial MNP concentration of 4.24 wt.%. The inset shows the experimental data of measuring samples with magnetic moment values ​​less than 0.004 emu, the arrows indicate the lower limits of the possible quantitative assessment of the MNP content (b). All measurements were carried out at 300 K.

Baixar (139KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024