Monitoring aggregation kinetics of colloidal systems by light scattering methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of implementing an original methodology for studying the kinetics of aggregation of colloidal solutions based on the joint application of dynamic and static light scattering methods is discussed. The theoretical justification of the proposed methodology is based on the concept of fractal dimension and scaling. Its experimental implementation is carried out using the example of the aggregation process of a colloidal gold solution initiated by a change in the ionic strength of the solution. The fractal dimension of Au clusters is determined by the angular and kinetic dependences of static light scattering (SLS). The hydrodynamic radii of clusters are determined by the dynamic light scattering (DLS) method. Based on the experimental results and the formed model dependence of the light scattering intensity on the size of clusters, the kinetic dependence of the concentration of Au clusters is constructed and the rate of their aggregation is estimated. The proposed method can be applied to study the kinetics of aggregation of fractal clusters in various colloidal systems.

Full Text

Restricted Access

About the authors

E. K. Alidzhanov

Оренбургский государственный университет

Author for correspondence.
Email: ekaalid@yandex.ru
Russian Federation, 460018 Оренбург

S. N. Letuta

Оренбургский государственный университет

Email: ekaalid@yandex.ru
Russian Federation, 460018 Оренбург

Yu. D. Lantukh

Оренбургский государственный университет

Email: ekaalid@yandex.ru
Russian Federation, 460018 Оренбург

D. A. Razdobreev

Оренбургский государственный университет

Email: ekaalid@yandex.ru
Russian Federation, 460018 Оренбург

References

  1. Russel W.B, Saville D.A.S., Schowalter W.R. Colloidal Dispersions: Cambridge Univ. Press, London, 1991.
  2. W. Hess, R. Klein. Generalized hydrodynamics of systems of Brownian particles // Adv. Phys. 1983. V. 32. P. 173–283. https://doi.org/10.1080/00018738300101551
  3. Lin M.Y., Lindsay H.M., Weitz D.A., Ball R.C., Klein R., Meakin P. Universal reaction-limited colloid aggregation. //Phys. Rev. A. 1990. V. 41. P. 2005–2020.https://doi.org/10.1103/PhysRevA.41.2005
  4. Huang Z., Zhang Q., Whatmore R.W. Studies of lead zirconate titanate sol aging Part II: Particle growth mechanisms and kinetics// J. Sol–Gel Sci. Technol. 2002. V.24. P. 49–55. https://doi.org/10.1023/A:1015161532663
  5. Ролдугин В.И. Свойства фракталных дисперсионных систем. // Успехи химии. 2003. Т. 72. № 11. С. 1027–1054. https://doi.org/10.1070/RC2003v072n11ABEH000829
  6. Carpineti M., Giglio M. Spinodal-type dynamics in fractal aggregation of colloidal clusters// Phys. Rev. Lett. 1992. V.68. P. 3327–3330. https://doi.org/10.1103/PhysRevLett.68.3327
  7. Carpineti M., Giglio M., Degiorgio V. Correlation and anticorrelation of fractal aggregates. A model for spinodal-type- aggregation // Nuovo Cimento D. 1994. V. 16 P. 1243–1246. https://doi.org/10.1007/BF02458807
  8. Axford S.D.T. Aggregation of colloidal silica: Reaction-limited kernel, stability ratio and distribution moments //J. Chem. Soc. Faraday Trans. 1997. V. 93. P. 303–311. https://doi.org/10.1039/A606195H
  9. John Gregory. Monitoring particle aggregation processes // Adv. Colloid Interface Sci. 2009. V. 147–148. P. 109–123. http://dx.doi.org/10.1016/j.cis.2008.09.003
  10. Holthoff H., Egelhaaf S. U., Borkovec M., Schurtenberger P., Sticher H. Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering // Langmuir, 1996. V. 12. № 23. P. 5541–5549. https://doi.org/10.1021/la960326e
  11. Gregor Trefalt, Istvan Szilagyi, Michal Borkovec. Probing colloidal particle aggregation by light scattering // Polymers, Colloids and Interfaces, Chimia, 2013. V. 67. P. 772–776. https://doi.org/10.2533/chimia.2013.772
  12. Sorensen C.M. Light scattering by fractal aggregates: A Review // Aerosol. Sci. Technol. 2001. V. 35:2. P. 648–687. https://doi.org/10.1080/02786820117868
  13. Sorensen C.M., Gregory C. R. The prefactor of fractal aggregates // Journal of Colloid and Interface Science 1997. V. 186. P. 447–452. https://doi.org/10.1006/jcis.1996.4664
  14. John Turkevich, Peter Cooper Stevenson, James Hillier. A study of the nucleation and growth processes in the synthesis of colloidal gold // Disc. Faraday. Soc. 1951. V. 11. P. 55–75.
  15. Krishnendu Saha, Sarit S. Agasti, Chaekyu Kim, Xiaoning Li, Vincent M. Rotello. Gold nanoparticles in chemical and biological sensing // Chem. Rev. 2012. V. 112, N.5. P. 2739–2779. https://doi.org/10.1021/cr2001178
  16. Olivier B.J., Sorensen C.M. Variable aggregation rates in colloidal gold: Kernel homogeneity dependence on aggregant concentration // Phys. Rev. A. 1990. V. 41. №. 4, P. 2093–2100. https://doi.org/10.1103/PhysRevA.41.2093
  17. Qicong Ying, James Marecek, Benjamin Chu. Slow aggregation of buckminsterfullerene (C60) in benzene solution // Chem. Phys. Lett. 1994. V. 219. P. 214–218.https://doi.org/10.1016/0009-2614(94)87047-0
  18. Э.К. Алиджанов, И.Е. Кареев, В.П. Бубнов, А.И. Котов, С.Н. Летута, Ю.Д. Лантух, Д.А. Раздобреев. Кинетика самосборки кластеров эндоэдральных металлофуллеренов в полярном растворителе // ФТТ. 2023. Т. 65, №. 9, С. 1618–1625. https://doi.org/10.21883/ftt.2023.09.56261.112
  19. Sakineh Alizadeh, Zahra Nazari. A Review on gold nanoparticles aggregation and its applications // J. Chem. Rev. 2020. V. 2. P. 228–242. https://doi.org/10.22034/jcr.2020.108561
  20. Xiong Liu, Mark Atwater, Jinhai Wang, Qun Huo. Extinction coefficient of gold nanoparticles with different sizes and different capping ligand // Colloids Surf. B. 2007. V. 58. P. 3–7. https://doi.org/10.1016/j.colsurfb.2006.08.005
  21. R. Hidalgo-Alvarez a, Martln A., Fernandez A., Bastos D., Martinez F., de las Nieves F.J. Electrokinetic properties, colloidal stability and aggregation kinetics of polymer colloids // Adv. Colloid Interface Sci. 1996. V. 67. P. 1–118. https://doi.org/10.1016/0001-8686%2896%2900297-7
  22. Taehoon Kim, Chang-Ha Lee, Sang-Woo Joo, Kangtaek Lee. Kinetics of gold nanoparticle aggregation: Experiments and modeling // J. Colloid Interface Sci. 2008. V. 318. P. 238–243. https://doi.org/10.1016/j.jcis.2007.10.029

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diagram illustrating the scattering of light by a scattering center in the direction of the detector with a wave vector ks at an angle Θ. The primary light wave with a wave vector propagates from the left. Scattering wave vector (n is the refractive index of the medium).

Download (34KB)
3. Fig. 2. 1 – histogram of the distribution of GNPs by radii in the initial solution (‹R›=17 nm); 2 – histogram of the distribution of colloidal gold clusters by hydrodynamic radii at the final stage of aggregation (‹R›=500 nm).

Download (47KB)
4. Fig. 3. Kinetics of changes in the hydrodynamic radius of gold clusters during their aggregation after adding a coagulant to the colloidal solution.

Download (56KB)
5. Fig. 4. Kinetics of changes in the intensity of light scattering of a colloidal gold solution after the addition of a coagulant.

Download (46KB)
6. Fig. 5. Optical density spectra of a colloidal gold solution measured at the initial (1) and final (2) stages of aggregation. Curve (2) is shown in fivefold magnification.

Download (77KB)
7. Fig. 6. Angular dependence of the light scattering intensity of a colloidal gold solution after its aggregation Rk≈ 500 nm. The slope tangent of the linear approximation of the graph corresponds to the fractal dimension of the clusters Df=1.6.

Download (43KB)
8. Fig. 7. Kinetic dependence of the direct (1) and inverse (2) concentration of GNP clusters in solution during their aggregation. The slope tangents of the approximation lines (dashed lines) of the initial and final parts of the inverse kinetic dependence graph give the values ​​of the aggregation rate constants: k1=2.8 10–14 cm3 s–1, k2=1.9 10–15 cm3 s–1.

Download (76KB)

Copyright (c) 2024 Russian Academy of Sciences