Studying the Feasibility of Creating Anisotropic Highly Hydrophobic Polymer Surfaces by Ion-Track Technology
- Authors: Kuvaytseva M.A.1, Apel P.Y.1
-
Affiliations:
- Объединенный институт ядерных исследований
- Issue: Vol 86, No 5 (2024)
- Pages: 608-624
- Section: Articles
- Submitted: 27.02.2025
- Published: 30.11.2024
- URL: https://cijournal.ru/0023-2912/article/view/671987
- DOI: https://doi.org/10.31857/S0023291224050088
- EDN: https://elibrary.ru/AARKQS
- ID: 671987
Cite item
Abstract
In the last two decades, the creation and research of superhydrophobic nanomaterials based on the “lotus effect” have attracted great interest. The effect is caused by the heterogeneous wetting of rough surfaces, when the grooves of a rough surface are filled with air (vapour) and water only contacts the tops of the protrusions. The drop forms a sphere on the surface and, if slightly inclined, rolls down and picks up the dirt particles. A wide variety of methods have been developed to produce such materials, among which potential of the ion track technology (ITT) is being explored. The aim of this research was to investigate the wettability of surface microrelief using two materials with different initial hydrophobicity degrees. By modifying the surface of polycarbonate and polypropylene films using the ITT, the samples with water contact angles of 140 ± 5° and 151 ± 5° at maximum, respectively, were obtained. It is shown that such angles are characteristic of microrelief, where the fraction f of the surface that is in contact with the droplet is decreased to the range 0 < f < 0.3. In order to increase the probability of droplets rolling down the material surface in a certain direction, the materials with inclined microrelief were obtained. In this case, the wettability becomes anisotropic. The droplet loses its spherical shape, deforming in the direction of inclination of needle-like surface elements. It was found that the anisotropy of wettability is higher at an inclination angle of the relief elements of 45° than that at 30° (relative to the flat surface).
Full Text

About the authors
M. A. Kuvaytseva
Объединенный институт ядерных исследований
Author for correspondence.
Email: kuvaytseva@jinr.ru
Russian Federation, Дубна
P. Yu. Apel
Объединенный институт ядерных исследований
Email: kuvaytseva@jinr.ru
Russian Federation, Дубна
References
- Blossey R. Self-cleaning surfaces – virtual realities // Nature Materials 2. 2003. P. 301−306. https://doi.org/10.1038/nmat856
- Бойнович Л.Б., Емельяненко А.М. Гидрофобные материалы и покрытия: принципы создания, свойства и применение // Успехи химии. 2008. Т. 77. № 7. С. 619–638.
- Yan Y.Y., Gao N., Barthlott W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces // Adv. in Coll. and Int. Science. 2011. V. 169. № 2. P. 80–105. https://doi.org/10.1016/j.cis.2011.08.005
- Кийко П.И., Черных Т.Н., Ульрих Д.В., Криушин М.В. Механизмы создания самоочищающихся строительных материалов // Известия высших учебных заведений. Строительство. 2021. № 6. С. 61–69. https://doi.org/10.32683/0536-1052-2021-750-6-61-69
- Шилова О.А., Цветкова И. Н., Красильникова Л.Н., Ладилина Е.Ю., Любова Т.С., Кручинина И.Ю. Синтез и исследование супергидрофобных, антиобледенительных гибридных покрытий // Транспортные системы и технологии. 2015. Т. 1. № 1. С. 91–98.
- Бойнович Л.Б., Емельяненко А.М. Методы борьбы с обледенением ЛЭП: перспективы и преимущества новых супергидрофобных покрытий // Электро. 2011. № 6. С. 9–17.
- Красильникова Л.Н., Цветкова И.Н., Окованцев А.Н., Шилова О.А. Органосиликатные покрытия как современный способ противодействия обледенению // Физика и химия стекла. 2018. Т. 44. С. 97. https://doi.org/10.31857/S0132665120010114
- Уколов А.И., Попова Т.Н. Эффективность применения коммерческих супергидрофобных покрытий в приложениях морской индустрии // Коллоид. журн. 2022. Т. 84. № 4. С. 475–487. https://doi.org/10.31857/S0023291222600614
- Бойнович Л.Б. Супергидрофобные покрытия – новый класс полифункциональных материалов // Вестник РАН. 2013. Т. 83. № 1. С. 10–22. https://doi.org/10.7868/S0869587313010039
- Chiou N.R., Lu C., Guan J., Lee L.J., Epstein A.J. Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties // Nat. Nanotechnol. 2007. V. 2. № 6. P. 354–357. https://doi.org/10.1038/nnano.2007.147
- Wang Z., Ci L., Chen L., Nayak S., Ajayan P. M., Koratkar N. Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes // Nano Lett. 2007. V. 7. № 3. P. 697–703. https://doi.org/10.1021/nl062853g
- Tsougeni K., Tserepi A., Boulousis G., Constantoudis V., Gogolides E. Tunable poly(dimethylsiloxane) topography in O2 or Ar plasmas for controlling surface wetting properties and their ageing // Jpn. J. Appl. Phys. Part 1. 2007. V. 46. № 2R. P. 744. https://doi.org/10.1143/JJAP.46.744
- Nakajima A., Hashimoto K., Watanabe T., Takai K., Yamauchi G., Fujishima A. Transparent superhydrophobic thin films with self-cleaning properties // Langmuir. 2000. V. 16. № 17. P. 7044–7047. https://doi.org/10.1021/la000155k
- Кравец Л.И., Ярмоленко М.А., Рогачев А.В., Гайнутдинов Р.В., Алтынов В.А., Лизунов Н.Е. Формирование на поверхности трековых мембран гидрофобных и супергидрофобных покрытий с целью создания композиционных мембран для опреснения воды // Коллоид. журн. 2022. Т. 84. № 4. С. 433–452. https://doi.org/10.31857/S0023291222040085
- Li M., Zhai J., Liu H., Song Y., Jiang Y., Zhu D. Electrochemical deposition of conductive superhydrophobic zinc oxide thin films // J. Phys. Chem. B. 2005. V. 107. № 37. P. 9954–9957. https://doi.org/10.1021/jp035562u
- Bravo J., Zhai L., Wu Z., Cohen R.E., Rubner M.F. Transparent superhydrophobic films based on silica nanoparticles // Langmuir. 2007. V. 23. № 13. P. 7293–7298. https://doi.org/10.1021/la070159q
- Li Y., Li C., Cho S.O., Duan G., Cai W. Silver hierarchical bowl-like array: Synthesis, superhydrophobicity, and optical properties // Langmuir. 2007. V. 23. № 19. P. 9802–9807. https://doi.org/10.1021/la700847c
- Oner D., McCarthy T.J. Ultrahydrophobic surfaces. Effects of topography length scale on wettability // Langmuir. 2000. V. 16. № 20. P. 7777–7782. https://doi.org/10.1021/LA000598O
- Wang M.F., Raghunathan N., Ziaie B. A nonlithographic top-down electrochemical approach for creating hierarchical (micro−nano) superhydrophobic silicon surfaces // Langmuir. 2007. V. 23. № 5. P. 2300–2303. https://doi.org/10.1021/la063230l
- He B., Patankar N., Lee J. Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces // Langmuir. 2003. V. 19. № 12. P. 4999–5003. https://doi.org/10.1021/la0268348
- Sheng X., Zhang J. Directional motion of water drop on ratchet-like superhydrophobic surfaces // Applied Surface Science. 2011. V. 257. № 15. P. 6811–6816. https://doi.org/10.1016/j.apsusc.2011.03.002
- Xu Q., Wang J., Smith I., Sanderson K. Directing the transportation of a water droplet on a patterned superhydrophobic surface // Applied Physics Letters. 2008. V. 93. P. 233112. https://doi.org/10.1063/1.3039874
- Malvadkar N., Hancock M., Sekeroglu K. et al. An engineered anisotropic nanofilm with unidirectional wetting properties // Nature Mater. 2010. V. 9. № 12. P. 1023–1028. https://doi.org/10.1038/nmat2864
- Spohr R. Ion tracks and microtechnology. Basic principles and applications. Wiesbaden, Germany: Vieweg, 1990.
- Apel P. Track etching technique in membrane technology // Radiat. Measurements. 2001. V. 34. № 1–6. P. 559–566. https://doi.org/10.1016/S1350-4487(01)00228-1
- Ramos S., Charlaix E., Benyagoub A., Toulemonde M. Wetting on nanorough surfaces // Physical Review E. 2003. V. 67. № 3. P. 31604. https://doi.org/10.1103/PhysRevE.67.031604
- Ramos S., Canut B., Benyagoub A. Nanodesign of superhydrophobic surfaces // Journal of Applied Physics. 2009. V. 106. P. 024305. https://doi.org/10.1063/1.3176484
- Spohr R., Sharma G., Forsberg P., Karlsson M, Hallen A., Westerberg L. Stroke asymmetry of tilted superhydrophobic ion track textures // Langmuir. 2010. V. 269. № 9. P. 6790–6796. https://doi.org/10.1021/la904137t.
- Apel P., Schulz A., Spohr R., Trautmann C., Vutsadakis V. Tracks of very heavy ions in polymers // Nuclear Inst. and Methods in Physics Research B. 1997. V. 131. № 1–4. P. 55–63. https://doi.org/10.1016/S0168-583X(97)00389-3
- Enge W., Grabisch K., Dallmeyer L., Bartholoma P., Beaujean R. Etching behaviour of the lexan polycarbonate plastic detector // Nuc. Instr. And Meth. 1975. № 127. P. 125–135. https://doi.org/10.1016/0029-554X(75)90312-2
- Fleischer R., Price P., Walker R. Nuclear tracks in solids. California Press, 1973.
- Митрофанов А.В. Кинетика травления трековых мембран с высокой пористостью // Препринт ФИАН им. П.Н. Лебедева. 2003. № 29. C. 1–48.
- Апель П.Ю. Температурные эффекты (влияние температуры травления и отжига после облучения) при регистрации тяжелых заряженных частиц в полипропилене // Приборы и техника эксперимента. 1994. № 6. С. 80–84.
- Apel P.Yu., Blonskaya I.V., Dmitriev S.N., Orelovitch O.L., Sartowska B. Structure of polycarbonate track-etch membranes: Origin of the “paradoxical” pore shape // J. Membr. Sci. 2006. № 282. № 1–2. P. 393–400. https://doi.org/10.1016/j.memsci.2006.05.045
- Ziegler О., Biersack J., Littmark U. The stopping and range of ions in solids. New York: Pergamon, 1985. https://www.solidworks.com/
- Кравец Л.И., Дмитриев С.Н., Апель П.Ю. Получение и свойства полипропиленовых трековых мембран // Химия высоких энергий. 1997. Т. 31. № 2. С. 108–113.
- Blonskaya I. V., Kristavchuk O.V., Nechaev A. N., Orelovich O.L., Polezhaeva O.A., Apel P.Y. Observation of latent ion tracks in semicrystalline polymers by scanning electron microscopy // J. Appl. Polym. Sci. 2021. V. 138. № 8. P. 49869. https://doi.org/10.1002/app.49869
- Apel P.Y. Track-etching. In encyclopedia of membrane science and technology; Hoek E.M.V., Tarabara V.V., Eds. Hoboken, NJ, USA: John Wiley & Sons. 2013. P. 332–355. https://doi.org/10.1002/9781118522318.emst040
- Briggs D., Brewis D.M., Konieczo M.B. X-ray photoelectron spectroscopy studies of polymer surfaces. Part 1 Chromic acid etching of polyolefins // J. Mater. Sci. 1976. V. 11. P. 1270–1277. https://doi.org/10.1007/BF00545146
- Li J., Maekawa Y., Yamaki T., Yoshida M. Chemical modification of a poly(ethylene terephthalate) surface by the selective alkylation of acid salts // Macromol. Chem. Phys. 2002. V. 203. № 17. P. 2470–2474. https://doi.org/10.1002/macp.200290023
- Korolkov I., Yeszhanov A.B., Gorin Y.G. et al. Hydrophobization of PET track-etched membranes for direct contact membrane distillation // Mater. Res. Express. 2018. V. 5. № 6. P. 065317. https://doi.org/10.1088/2053-1591/aacc39
- Русанов А.И. К теории смачивания упругодеформируемых тел // Коллоидный журнал. 1977. Т. XXXIX. № 4. С. 704–717.
- Dutt S., Apel P., Lizunov N., Notthoff C., Wen Q., Trautmann C., Mota-Santiago P., Kirby N., Kluth P. Shape of nanopores in track-etched polycarbonate membranes // Journal of Membrane Science. 2021. V. 638. P. 119681. https://doi.org/10.1016/j.memsci.2021.119681
- Hernandez A., Martinez-villa F., Ibañez, J.A., Arribas J.I., Tejerina A.F. An experimentally fitted and simple model for the pores in nuclepore membranes // Separation Science and Technology. 1986. V. 21. № 6–7. P. 665–677. https://doi.org/10.1080/01496398608056142
- Abdelsalam M., Barlett P., Kelf T., Baumberg J. Wetting of regularly structured gold surfaces // Langmuir. 2005. V. 21. № 5. P. 1753-1757. https://doi.org/10.1021/la047468q
- Herminghaus S. Roughness-induced non-wetting // Europhys. Lett. 2000. V. 52. № 2. P. 165–170. https://doi.org/10.1209/epl/i2000-00418-8
- Marmur A. From hygrophylic to superhygrophobic: Theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials // Langmuir. 2008. V. 24. № 14. P. 7573–7579. https://doi.org/10.1021/la800304r
- Whyman G., Bormashenko E. How to make the Cassie wetting state stable? // Langmuir. 2011. V. 27. № 13. P. 8171–8176. https://doi.org/10.1021/la2011869
- Ou J., Fang G., Li W., Amirfazli A. Wetting transition on textured surfaces: A thermodynamic approach // J. Phys. Chem. C. 2019. V. 123. № 39. P. 23976–23986. https://doi.org/10.1021/acs.jpcc.9b05477
- Ерофеев Д.А., Машляковский Л.Н. Получение и применение гидрофобных полиуретановых кремнийсодержащих покрытий. Часть 1: Основы явления гидрофобности (обзор) // Изв. СПбГТИ(ТУ). 2022. Т. 62. С. 58–65. https://doi.org/10.36807/1998-9849-2022-62-88-58-65
- Li S., Li H., Wang X., Song Y., Liu Y., Jiang L., Zhu D. Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes // J. Phys. Chem. B. 2002. V. 106. № 36. P. 9274–9276. https://doi.org/10.1021/jp0209401
- Cheng Y.-T., Rodak D. E. Is the lotus leaf superhydrophobic? // Appl. Phys. Lett. 2005. V. 86. P. 144101. https://doi.org/10.1063/1.1895487
- Otten A., Herminghaus S. How plants keep dry: A physicist’s point of view // Langmuir. 2004. V. 20. № 6. P. 2405–2408. https://doi.org/10.1021/la034961d
- Extrand C.W. Model for contact angles hysteresis on rough and ultraphobic surfaces // Langmuir. 2002. № 18. P. 7991–7999. https://doi.org/10.1021/la025769z
- Иваненко И. А., Гульбекян Г. Г., Казаринов Н. Ю., Калагин И. В., Франко Й. Создание магнитной системы нового изохронного циклотрона ДЦ-140 на основе электромагнита ДЦ-72 // Письма в ЭЧАЯ. Физика и техника ускорителей. 2020. Т. 17. № 4 (229). С. 463–467.
Supplementary files
