Studying the Feasibility of Creating Anisotropic Highly Hydrophobic Polymer Surfaces by Ion-Track Technology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the last two decades, the creation and research of superhydrophobic nanomaterials based on the “lotus effect” have attracted great interest. The effect is caused by the heterogeneous wetting of rough surfaces, when the grooves of a rough surface are filled with air (vapour) and water only contacts the tops of the protrusions. The drop forms a sphere on the surface and, if slightly inclined, rolls down and picks up the dirt particles. A wide variety of methods have been developed to produce such materials, among which potential of the ion track technology (ITT) is being explored. The aim of this research was to investigate the wettability of surface microrelief using two materials with different initial hydrophobicity degrees. By modifying the surface of polycarbonate and polypropylene films using the ITT, the samples with water contact angles of 140 ± 5° and 151 ± 5° at maximum, respectively, were obtained. It is shown that such angles are characteristic of microrelief, where the fraction f of the surface that is in contact with the droplet is decreased to the range 0 < f < 0.3. In order to increase the probability of droplets rolling down the material surface in a certain direction, the materials with inclined microrelief were obtained. In this case, the wettability becomes anisotropic. The droplet loses its spherical shape, deforming in the direction of inclination of needle-like surface elements. It was found that the anisotropy of wettability is higher at an inclination angle of the relief elements of 45° than that at 30° (relative to the flat surface).

Full Text

Restricted Access

About the authors

M. A. Kuvaytseva

Объединенный институт ядерных исследований

Author for correspondence.
Email: kuvaytseva@jinr.ru
Russian Federation, Дубна

P. Yu. Apel

Объединенный институт ядерных исследований

Email: kuvaytseva@jinr.ru
Russian Federation, Дубна

References

  1. Blossey R. Self-cleaning surfaces – virtual realities // Nature Materials 2. 2003. P. 301−306. https://doi.org/10.1038/nmat856
  2. Бойнович Л.Б., Емельяненко А.М. Гидрофобные материалы и покрытия: принципы создания, свойства и применение // Успехи химии. 2008. Т. 77. № 7. С. 619–638.
  3. Yan Y.Y., Gao N., Barthlott W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces // Adv. in Coll. and Int. Science. 2011. V. 169. № 2. P. 80–105. https://doi.org/10.1016/j.cis.2011.08.005
  4. Кийко П.И., Черных Т.Н., Ульрих Д.В., Криушин М.В. Механизмы создания самоочищающихся строительных материалов // Известия высших учебных заведений. Строительство. 2021. № 6. С. 61–69. https://doi.org/10.32683/0536-1052-2021-750-6-61-69
  5. Шилова О.А., Цветкова И. Н., Красильникова Л.Н., Ладилина Е.Ю., Любова Т.С., Кручинина И.Ю. Синтез и исследование супергидрофобных, антиобледенительных гибридных покрытий // Транспортные системы и технологии. 2015. Т. 1. № 1. С. 91–98.
  6. Бойнович Л.Б., Емельяненко А.М. Методы борьбы с обледенением ЛЭП: перспективы и преимущества новых супергидрофобных покрытий // Электро. 2011. № 6. С. 9–17.
  7. Красильникова Л.Н., Цветкова И.Н., Окованцев А.Н., Шилова О.А. Органосиликатные покрытия как современный способ противодействия обледенению // Физика и химия стекла. 2018. Т. 44. С. 97. https://doi.org/10.31857/S0132665120010114
  8. Уколов А.И., Попова Т.Н. Эффективность применения коммерческих супергидрофобных покрытий в приложениях морской индустрии // Коллоид. журн. 2022. Т. 84. № 4. С. 475–487. https://doi.org/10.31857/S0023291222600614
  9. Бойнович Л.Б. Супергидрофобные покрытия – новый класс полифункциональных материалов // Вестник РАН. 2013. Т. 83. № 1. С. 10–22. https://doi.org/10.7868/S0869587313010039
  10. Chiou N.R., Lu C., Guan J., Lee L.J., Epstein A.J. Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties // Nat. Nanotechnol. 2007. V. 2. № 6. P. 354–357. https://doi.org/10.1038/nnano.2007.147
  11. Wang Z., Ci L., Chen L., Nayak S., Ajayan P. M., Koratkar N. Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes // Nano Lett. 2007. V. 7. № 3. P. 697–703. https://doi.org/10.1021/nl062853g
  12. Tsougeni K., Tserepi A., Boulousis G., Constantoudis V., Gogolides E. Tunable poly(dimethylsiloxane) topography in O2 or Ar plasmas for controlling surface wetting properties and their ageing // Jpn. J. Appl. Phys. Part 1. 2007. V. 46. № 2R. P. 744. https://doi.org/10.1143/JJAP.46.744
  13. Nakajima A., Hashimoto K., Watanabe T., Takai K., Yamauchi G., Fujishima A. Transparent superhydrophobic thin films with self-cleaning properties // Langmuir. 2000. V. 16. № 17. P. 7044–7047. https://doi.org/10.1021/la000155k
  14. Кравец Л.И., Ярмоленко М.А., Рогачев А.В., Гайнутдинов Р.В., Алтынов В.А., Лизунов Н.Е. Формирование на поверхности трековых мембран гидрофобных и супергидрофобных покрытий с целью создания композиционных мембран для опреснения воды // Коллоид. журн. 2022. Т. 84. № 4. С. 433–452. https://doi.org/10.31857/S0023291222040085
  15. Li M., Zhai J., Liu H., Song Y., Jiang Y., Zhu D. Electrochemical deposition of conductive superhydrophobic zinc oxide thin films // J. Phys. Chem. B. 2005. V. 107. № 37. P. 9954–9957. https://doi.org/10.1021/jp035562u
  16. Bravo J., Zhai L., Wu Z., Cohen R.E., Rubner M.F. Transparent superhydrophobic films based on silica nanoparticles // Langmuir. 2007. V. 23. № 13. P. 7293–7298. https://doi.org/10.1021/la070159q
  17. Li Y., Li C., Cho S.O., Duan G., Cai W. Silver hierarchical bowl-like array: Synthesis, superhydrophobicity, and optical properties // Langmuir. 2007. V. 23. № 19. P. 9802–9807. https://doi.org/10.1021/la700847c
  18. Oner D., McCarthy T.J. Ultrahydrophobic surfaces. Effects of topography length scale on wettability // Langmuir. 2000. V. 16. № 20. P. 7777–7782. https://doi.org/10.1021/LA000598O
  19. Wang M.F., Raghunathan N., Ziaie B. A nonlithographic top-down electrochemical approach for creating hierarchical (micro−nano) superhydrophobic silicon surfaces // Langmuir. 2007. V. 23. № 5. P. 2300–2303. https://doi.org/10.1021/la063230l
  20. He B., Patankar N., Lee J. Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces // Langmuir. 2003. V. 19. № 12. P. 4999–5003. https://doi.org/10.1021/la0268348
  21. Sheng X., Zhang J. Directional motion of water drop on ratchet-like superhydrophobic surfaces // Applied Surface Science. 2011. V. 257. № 15. P. 6811–6816. https://doi.org/10.1016/j.apsusc.2011.03.002
  22. Xu Q., Wang J., Smith I., Sanderson K. Directing the transportation of a water droplet on a patterned superhydrophobic surface // Applied Physics Letters. 2008. V. 93. P. 233112. https://doi.org/10.1063/1.3039874
  23. Malvadkar N., Hancock M., Sekeroglu K. et al. An engineered anisotropic nanofilm with unidirectional wetting properties // Nature Mater. 2010. V. 9. № 12. P. 1023–1028. https://doi.org/10.1038/nmat2864
  24. Spohr R. Ion tracks and microtechnology. Basic principles and applications. Wiesbaden, Germany: Vieweg, 1990.
  25. Apel P. Track etching technique in membrane technology // Radiat. Measurements. 2001. V. 34. № 1–6. P. 559–566. https://doi.org/10.1016/S1350-4487(01)00228-1
  26. Ramos S., Charlaix E., Benyagoub A., Toulemonde M. Wetting on nanorough surfaces // Physical Review E. 2003. V. 67. № 3. P. 31604. https://doi.org/10.1103/PhysRevE.67.031604
  27. Ramos S., Canut B., Benyagoub A. Nanodesign of superhydrophobic surfaces // Journal of Applied Physics. 2009. V. 106. P. 024305. https://doi.org/10.1063/1.3176484
  28. Spohr R., Sharma G., Forsberg P., Karlsson M, Hallen A., Westerberg L. Stroke asymmetry of tilted superhydrophobic ion track textures // Langmuir. 2010. V. 269. № 9. P. 6790–6796. https://doi.org/10.1021/la904137t.
  29. Apel P., Schulz A., Spohr R., Trautmann C., Vutsadakis V. Tracks of very heavy ions in polymers // Nuclear Inst. and Methods in Physics Research B. 1997. V. 131. № 1–4. P. 55–63. https://doi.org/10.1016/S0168-583X(97)00389-3
  30. Enge W., Grabisch K., Dallmeyer L., Bartholoma P., Beaujean R. Etching behaviour of the lexan polycarbonate plastic detector // Nuc. Instr. And Meth. 1975. № 127. P. 125–135. https://doi.org/10.1016/0029-554X(75)90312-2
  31. Fleischer R., Price P., Walker R. Nuclear tracks in solids. California Press, 1973.
  32. Митрофанов А.В. Кинетика травления трековых мембран с высокой пористостью // Препринт ФИАН им. П.Н. Лебедева. 2003. № 29. C. 1–48.
  33. Апель П.Ю. Температурные эффекты (влияние температуры травления и отжига после облучения) при регистрации тяжелых заряженных частиц в полипропилене // Приборы и техника эксперимента. 1994. № 6. С. 80–84.
  34. Apel P.Yu., Blonskaya I.V., Dmitriev S.N., Orelovitch O.L., Sartowska B. Structure of polycarbonate track-etch membranes: Origin of the “paradoxical” pore shape // J. Membr. Sci. 2006. № 282. № 1–2. P. 393–400. https://doi.org/10.1016/j.memsci.2006.05.045
  35. Ziegler О., Biersack J., Littmark U. The stopping and range of ions in solids. New York: Pergamon, 1985. https://www.solidworks.com/
  36. Кравец Л.И., Дмитриев С.Н., Апель П.Ю. Получение и свойства полипропиленовых трековых мембран // Химия высоких энергий. 1997. Т. 31. № 2. С. 108–113.
  37. Blonskaya I. V., Kristavchuk O.V., Nechaev A. N., Orelovich O.L., Polezhaeva O.A., Apel P.Y. Observation of latent ion tracks in semicrystalline polymers by scanning electron microscopy // J. Appl. Polym. Sci. 2021. V. 138. № 8. P. 49869. https://doi.org/10.1002/app.49869
  38. Apel P.Y. Track-etching. In encyclopedia of membrane science and technology; Hoek E.M.V., Tarabara V.V., Eds. Hoboken, NJ, USA: John Wiley & Sons. 2013. P. 332–355. https://doi.org/10.1002/9781118522318.emst040
  39. Briggs D., Brewis D.M., Konieczo M.B. X-ray photoelectron spectroscopy studies of polymer surfaces. Part 1 Chromic acid etching of polyolefins // J. Mater. Sci. 1976. V. 11. P. 1270–1277. https://doi.org/10.1007/BF00545146
  40. Li J., Maekawa Y., Yamaki T., Yoshida M. Chemical modification of a poly(ethylene terephthalate) surface by the selective alkylation of acid salts // Macromol. Chem. Phys. 2002. V. 203. № 17. P. 2470–2474. https://doi.org/10.1002/macp.200290023
  41. Korolkov I., Yeszhanov A.B., Gorin Y.G. et al. Hydrophobization of PET track-etched membranes for direct contact membrane distillation // Mater. Res. Express. 2018. V. 5. № 6. P. 065317. https://doi.org/10.1088/2053-1591/aacc39
  42. Русанов А.И. К теории смачивания упругодеформируемых тел // Коллоидный журнал. 1977. Т. XXXIX. № 4. С. 704–717.
  43. Dutt S., Apel P., Lizunov N., Notthoff C., Wen Q., Trautmann C., Mota-Santiago P., Kirby N., Kluth P. Shape of nanopores in track-etched polycarbonate membranes // Journal of Membrane Science. 2021. V. 638. P. 119681. https://doi.org/10.1016/j.memsci.2021.119681
  44. Hernandez A., Martinez-villa F., Ibañez, J.A., Arribas J.I., Tejerina A.F. An experimentally fitted and simple model for the pores in nuclepore membranes // Separation Science and Technology. 1986. V. 21. № 6–7. P. 665–677. https://doi.org/10.1080/01496398608056142
  45. Abdelsalam M., Barlett P., Kelf T., Baumberg J. Wetting of regularly structured gold surfaces // Langmuir. 2005. V. 21. № 5. P. 1753-1757. https://doi.org/10.1021/la047468q
  46. Herminghaus S. Roughness-induced non-wetting // Europhys. Lett. 2000. V. 52. № 2. P. 165–170. https://doi.org/10.1209/epl/i2000-00418-8
  47. Marmur A. From hygrophylic to superhygrophobic: Theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials // Langmuir. 2008. V. 24. № 14. P. 7573–7579. https://doi.org/10.1021/la800304r
  48. Whyman G., Bormashenko E. How to make the Cassie wetting state stable? // Langmuir. 2011. V. 27. № 13. P. 8171–8176. https://doi.org/10.1021/la2011869
  49. Ou J., Fang G., Li W., Amirfazli A. Wetting transition on textured surfaces: A thermodynamic approach // J. Phys. Chem. C. 2019. V. 123. № 39. P. 23976–23986. https://doi.org/10.1021/acs.jpcc.9b05477
  50. Ерофеев Д.А., Машляковский Л.Н. Получение и применение гидрофобных полиуретановых кремнийсодержащих покрытий. Часть 1: Основы явления гидрофобности (обзор) // Изв. СПбГТИ(ТУ). 2022. Т. 62. С. 58–65. https://doi.org/10.36807/1998-9849-2022-62-88-58-65
  51. Li S., Li H., Wang X., Song Y., Liu Y., Jiang L., Zhu D. Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes // J. Phys. Chem. B. 2002. V. 106. № 36. P. 9274–9276. https://doi.org/10.1021/jp0209401
  52. Cheng Y.-T., Rodak D. E. Is the lotus leaf superhydrophobic? // Appl. Phys. Lett. 2005. V. 86. P. 144101. https://doi.org/10.1063/1.1895487
  53. Otten A., Herminghaus S. How plants keep dry: A physicist’s point of view // Langmuir. 2004. V. 20. № 6. P. 2405–2408. https://doi.org/10.1021/la034961d
  54. Extrand C.W. Model for contact angles hysteresis on rough and ultraphobic surfaces // Langmuir. 2002. № 18. P. 7991–7999. https://doi.org/10.1021/la025769z
  55. Иваненко И. А., Гульбекян Г. Г., Казаринов Н. Ю., Калагин И. В., Франко Й. Создание магнитной системы нового изохронного циклотрона ДЦ-140 на основе электромагнита ДЦ-72 // Письма в ЭЧАЯ. Физика и техника ускорителей. 2020. Т. 17. № 4 (229). С. 463–467.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geometry of track etching in homogeneous material with high (a) and low (b) selectivity [29]. The shape of the depression formed during track etching is determined by the ratio of the velocities of etching along the track (VT) and etching of the intact material (VB), as well as the particle's path length in the material. R is the ion run in the material, φ is the angle at the apex of the etched cone (determined by the value of etch selectivity φ = 2 arcsin V). In case (a) the angle φ is taken negligibly small

Download (95KB)
3. Fig. 2. Formation of rough surfaces and their gradual evolution during etching of a perpendicular track array with high (a) and low (b) selectivity of etching. The notations are explained in the text

Download (171KB)
4. Fig. 3. Formation of rough surfaces during etching of an inclined track array with high (a) and low (b) selectivity of etching

Download (87KB)
5. Fig. 4. a) methods of measuring edge angles, top view (the arrow indicates the horizontal projection of the sample relief direction); b) measured angles on the anisotropic polymer surface at the second measurement method: θL - CG on the left, θR - CG on the right

Download (102KB)
6. Fig. 5. Characteristics of reliefs obtained by etching of polycarbonate irradiated at 90° (a, b) and 45° (c, d). a, c) dependences of edge angles on etching time (smooth curves are drawn by hand); b, d) dependences of the fraction of the remaining surface on etching time: 1 - experimental data, 2 - approximating curves plotted at VB = (2.15 ± 0.16) × 10-6 (b) and (1.79 ± 0.18) × 10-6 cm/min (d). Two standard deviations for the VB value are indicated here and in the caption of Fig. 8. The graph (c) shows the CG values on the left (1) and on the right (2)

Download (254KB)
7. Fig. 6. Electron photographs of microstructured surfaces obtained by etching polycarbonate irradiated with ions at an angle of 45° for: 10 (a), 20 (b), 30 (c) and 40 (d) min. Scale feature size 10 μm (a-d)

Download (178KB)
8. Fig. 7. Photograph of a drop on an anisotropic polycarbonate surface. In the upper part of the image one can see the end of the needle, relative to which the drop spontaneously moved to the left

Download (38KB)
9. Fig. 8. Characteristics of reliefs obtained by etching polypropylene irradiated at 45° (a, b) and 30° (c, d). a, c) dependences of edge angles on etching time. Smooth curves are drawn by hand. The graphs show CG values on the left (1) and on the right (2). b, d) dependences of the fraction of the remaining surface on the etching time: 1 - experimental data, 2 - approximating curves plotted at VB = (4.98 ± 0.22) × 10-6 (b) and (4.98 ± 0.28) × 10-6 cm/min (d)

Download (277KB)
10. Fig. 9. Electron photographs of microstructured surfaces obtained by etching polypropylene irradiated at 45° (a-d) and 30° (e-h). Etching times: 20 (a), 30 (e), 40 (b, f), 50 (g), 60 (c), 75 (d) and 80 (h) min. a-d) images of spalling; e-h) frontal surfaces. Scale bar size 20 µm (a-d) and 10 µm (e-h)

Download (413KB)
11. Fig. 10. Electron micrographs of non-irradiated polycarbonate (a) and polypropylene (b) chemically etched for 20 min. The samples are tilted at an angle of 45° to the electron beam

Download (353KB)
12. Fig. 11. A section of polycarbonate film with parallel ‘track’ channels. Track density 2 × 104 cm-2

Download (61KB)
13. Fig. 12. Profile of the left and right sides of the lower part of the drop on a surface having needle-like roughness elements

Download (57KB)

Copyright (c) 2024 Russian Academy of Sciences