Control of the Wetting Ability of a Material by Local Vibration on the Interfacial Layer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of controlling the wetting ability of a material synthesized in the interfacial layer of a heterogeneous liquid/liquid system by local vibration has been shown. The influence of the nature of the organic acid, metal and solvent on the contact angle of the interfacial layer material adhering to various substrates was studied. It has been established that with local vibration, a material with a more ordered structure, with higher roughness and lower water content, and, as a consequence, with a higher contact angle, is synthesized. On the studied substrates, hydrophobic coatings with contact angles of 100–163° were obtained, which retained their water-repellent properties under atmospheric conditions for a long time.

Full Text

Restricted Access

About the authors

E. N. Golubina

Новомосковский институт (филиал) Российского химико-технологического университета имени Д.И. Менделеева

Author for correspondence.
Email: Elena-Golubina@mail.ru
Russian Federation, Новомосковск

N. F. Kizim

Новомосковский институт (филиал) Российского химико-технологического университета имени Д.И. Менделеева

Email: Elena-Golubina@mail.ru
Russian Federation, Новомосковск

References

  1. Бойнович Л.Б., Емельяненко А.М. Гидрофобные материалы и покрытия: принципы создания, свойства и применение // Успехи химии. 2008. Т. 77. № 7. С. 619–638. https://doi.org/10.1070/RC2008v077n07ABEH003775
  2. Емельяненко А.М. Супергидрофобные материалы и покрытия: от фундаментальных исследований до практических приложений // Коллоидный журнал. 2022. T. 84. № 4. C. 375–379. https://doi.org/10.31857/S0023291222040036
  3. Piscitelli F., Chiariello A., Dabkowski D., Corraro G., Marra F., Di Palma L. Superhydrophobic coatings as anti-icing systems for small aircraft // Aerospace. 2020. V. 7. № 1. P. 2. https://doi.org/10.3390/aerospace7010002
  4. Zhang Z., Xue F., Bai W., Shi X., Liu Ya., Feng L. Superhydrophobic surface on Al alloy with robust durability and excellent self-healing performance // Surface and Coatings Technology. 2021. V. 410. № 3. Р. 126952. https://doi.org/10.1016/j.surfcoat.2021.126952
  5. Кожухова М.И., Флорес-Вивиан И., Рао С., Строкова В.В., Соболев К.Г. Комплексное силоксановое покрытие для гидрофобизации бетонных поверхностей // Строительные материалы. 2014. № 3. С. 26–30.
  6. Siengchin S. A review on lightweight materials for defence applications: Present and future developments // Defence Technology. 2023. V. 24. P. 1–17. https://doi.org/10.1016/j.dt.2023.02.025
  7. Gibson P. Water-repellent treatment on military uniform fabrics: Physiological and comfort implications // Journal of industrial textiles. 2008. V. 38. № 1. Р. 43–54. https://doi.org/10.1177/1528083707087833
  8. Du X.Q., Liu Y.W., Chen Y. Enhancing the corrosion resistance of aluminum by superhydrophobic silane/graphene oxide coating // Applied Physics A. 2021. V. 127. № 8. Р. 580. https://doi.org/10.1007/s00339-021-04730-3
  9. Chen Y., Liu Y.W., Xie Y., Zhang H.H., Zhang Z. Preparation and anti-corrosion performance of superhydrophobic silane/graphene oxide composite coating on copper // Surface and Coatings Technology. 2021. V. 423. № 10. P. 127622. https://doi.org/10.1016/j.surfcoat.2021.127622
  10. Zhe Li, Xinsheng Wang, Haoyu Bai, Moyuan Cao. Advances in bioinspired superhydrophobic surfaces made from silicones: fabrication and application // Polymers. 2023. V. 15. № 3. P. 543. https://doi.org/10.3390/polym15030543
  11. Лисичкин Г.В., Оленин А.Ю. Гидрофобизация неорганических материалов методом химического модифицирования поверхности // Журнал прикладной химии. 2020. Т. 93. № 1. С. 5–19. https://doi.org/10.31857/S0044461820010016
  12. Bin Yu, Huicong Liu, Haining Chen, Weiping Li, Liqun Zhu, Weitao Liang A wear and heat-resistant hydrophobic fluoride-free coating based on modified nanoparticles and waterborne-modified polyacrylic resin // RSC Advance. 2023. № 7. P. 4542–4552. https://doi.org/10.1039/D2RA07237H
  13. Голубина Е.Н., Кизим Н.Ф. Межфазный синтез: морфология, структура и свойства межфазных образований в системах жидкость-жидкость // Журнал физической химии. 2021. Т. 95. № 4. C. 508–528. https://doi.org/10.31857/S0044453721040075
  14. Kizim N.F., Golubina E.N. Interfacial synthesis of materials with specified hydrophobicity based on REE salts // Surface Review and Letters. 2023. V. 30. № 2. Р. 2350004. https://doi.org/10.1142/S0218625X2350004X
  15. Кизим Н.Ф., Голубина Е.Н. Гидрофобные материалы на основе солей ди-(2-этилгексил) фосфорной кислоты // Журнал физической химии. 2018. Т. 92. № 3. С. 457–461. https://doi.org/10.7868/S004445371803010X
  16. Кузина Е.А., Омран Ф.Ш., Емельяненко А.М., Бойнович Л.Б. О важности подбора режима гидрофобизации для получения стойких супергидрофобных покрытий // Коллоидный журнал. 2023. Т. 85. № 1. С. 63–70. https://doi.org/10.31857/S0023291222600614
  17. Ellinas K., Tserepi A., Gogolides E. Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review // Advances in Colloid and Interface Science. 2017. V. 250. P. 132–157. https://doi.org/10.1016/j.cis.2017.09.003
  18. Arukalam I. O., Oguzie E. E., Li Y. Nanostructured superhydrophobic polysiloxane coating for high barrier and anticorrosion applications in marine environment // J. Colloid Interface Science. 2018. V. 512. P. 674–685. https://doi.org/10.1016/j.jcis.2017.10.089
  19. Barthwal S., Lee B., Lim S.-H. Fabrication of robust and durable slippery anti-icing coating on textured superhydrophobic aluminum surfaces with infused silicone oil // Applied Surface Science. 2019. V. 496. ID 143677. https://doi.org/10.1016/j.apsusc.2019.143677
  20. Кизим Н.Ф., Голубина Е.Н. Спонтанная поверхностная конвекция и скорость экстракции (реэкстракции) в системах с трибутилфосфатом и ди-(2-этилгексил)-фосфорной кислотой // Журнал прикладной химии. 2020. Т. 93. № 7. С. 1005–1011. https://doi.org/10.31857/S0044461820070117
  21. Голубина Е.Н., Кизим Н.Ф. Практикум и задачник по нанохимии. Тула: Аквариус. 2018. 128 с.
  22. Рябов Д.Д., Голубина Е.Н., Кизим Н.Ф. Смачиваемость материалов на основе ди-(2-этилгексил) фосфатов металлов // Успехи в химии и химической технологии. 2018. Т. XXXII. № 10. С. 47–49.
  23. Голубина Е.Н., Кизим Н.Ф. От гидрофильности к гидрофобности поверхности. Варьирование смачиваемости материала на подложке за счет локального колебательного воздействия при межфазном синтезе материала // Журнал физической химии. 2023. Т. 97. № 1. C. 75–80. https://doi.org/10.31857/S0044453723010107

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the edge angle of the material transferred to the glass plate and the change in the shape of the water drop on the synthesis time in the system 0.10 M aqueous solution of YbCl3 / 0.05 M stearic acid solution in chloroform when a local oscillating influence is applied to the system (1) and in its absence (2). Resonance frequency 5.1 kHz

Download (168KB)
3. Fig. 2. Surface topography of the material surface of interfacial formations based on ytterbium stearate (a, b) or di-(2-ethylhexyl) ytterbium phosphate (c, d) transferred to a glass plate, when mechanical influence is applied to the system (b, d) and in its absence (a, c). The system is 0.10 M aqueous solution of YbCl3 / 0.05 M solution of stearic acid or D2EGFC in heptane. Resonance frequency 6.6 kHz

Download (254KB)
4. Fig. 3. SEM images of the material of interfacial formations based on di-(2-ethylhexyl) ytterbium phosphate synthesised under imposed mechanical vibrations (b) and their absence (a). The system is 0.10 M aqueous solution of YbCl3 / 0.05 M solution of D2EGPC in heptane. Resonance frequency 6.6 kHz

Download (246KB)
5. Fig. 4. Photographic images of the interfacial material based on di-(2-ethylhexyl) neodymium phosphate adhered to a glass plate, synthesised by imposing local vibrational action on the system (b) and its absence (a). The system is 0.10 M aqueous solution of NdCl3 / 0.05 M solution of D2EGPC in heptane. Resonance frequency 6.6 kHz

Download (108KB)
6. Fig. 5. Dependence of the edge angle of the material transferred to the glass plate on the frequency of vibrocell vibrations during its interfacial synthesis in the system 0.10 M aqueous solution of HoCl3 / 0.05 M solution of stearic acid in chloroform (1), heptane (2), decane (3)

Download (72KB)
7. Fig. 6. Variation of the edge angle of aluminium alloy modified with interfacial formation material based on di-(2-ethylhexyl) phosphates: zinc (1), praseodymium (2), holmium (3), stearates: zinc (4), praseodymium (5), holmium (6) from time. System 0.10 M aqueous solution of metal chloride / 0.05 M solution of stearic acid or D2EGFC in heptane

Download (94KB)

Copyright (c) 2024 Russian Academy of Sciences