VISCOELASTIC PROPERTIES OF FERROFLUIDS WITH CLUSTERED PARTICLES
- Authors: CHIRIKOV D.N.1, ZUBAREV A.Y.1
-
Affiliations:
- Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
- Issue: Vol 85, No 1 (2023)
- Pages: 93-100
- Section: Articles
- Submitted: 27.02.2025
- Published: 01.01.2023
- URL: https://cijournal.ru/0023-2912/article/view/671837
- DOI: https://doi.org/10.31857/S0023291222600456
- EDN: https://elibrary.ru/KFCLJU
- ID: 671837
Cite item
Abstract
Clustered (multi-core) magnetic fluids provoke a considerable interest of researchers and practitioners, because they are very promising for various technical and biomedical applications. These fluids contain clusters (clustered particles), which, in turn, consist of ferromagnetic nanoparticles retained together by a polymer shell. The typical size of a cluster varies from a few tens to several hundreds of nanometers, while the sizes of individual single-domain ferroparticles of which it is composed vary from 5 to 12 nm. The rheological phenomena in such fluids (strong magnetorheological effect and slow viscoelastic relaxation) are predetermined by the association of the clustered particles under the action of an external magnetic field into heterogeneous structures and aggregates and the dynamics and disruption of these aggregates in macroscopic deformational flows. In this work, we propose a theoretical model for viscoelastic effects in clustered magnetic fluids. The model is based on the idea of aggregating composite particles into linear chain-like aggregates. In the order of magnitude, the theoretical results agree with experimental data.
About the authors
D. N. CHIRIKOV
Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
Email: cloud28021985@gmail.com
Россия, 620002, Екатеринбург, ул. Мира, 19
A. YU. ZUBAREV
Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
Author for correspondence.
Email: cloud28021985@gmail.com
Россия, 620002, Екатеринбург, ул. Мира, 19
References
- Розенцвейг Р. Феррогидродинамика. М.: Мир, 1989. 357 с.
- Шлиомис М.И. Магнитные жидкости // УФН. 1974. Т. 112, вып. 3. С. 427–458.
- Блум Э.Я., Майоров М.М., Цеберс А.О. Магнитные жидкости, Рига: Зинатне, 1989. 386 с.
- Odenbach S. Magnetoviscous Effect in Ferrofluids. Springer, 2002.
- Odenbach S. Ferrofluids, Magnetically Controllable Fluids and Their Applications (Ed. Odenbach S.). Springer, 2020.
- Odenbach S. Colloidal Magnetic Fluids, Basics, Devel-opment and Application of Ferrofluids (Ed. Odenbach S.). Springer, 2009.
- Dutz S., Andra W., Hergt R., Muller R., Oestreich Ch., Schmidt Ch., Topfer J., Zeisberger M., Bellemann M. Influence of dextran coating on the magnetic behaviour of iron oxide nanoparticles // J. Magn. Magn. Mater. 2007. V. 311. P. 51–54.
- Zablotsky D., Kralj S., Kitenbergs G., Maiorov M.M. Relating magnetization, structure and rheology in ferrofluids with multi-core magnetic nanoparticles // Journal of Non-Newtonian Fluid Mechanics. 2020. V. 278. P. 104248.
- Dutz S., Kettering M., Hilger I., Muller R., Zeisberger M. Magnetic multicore nanoparticles for hyperthermia-influence of particle immobilization in tumour tissue on magnetic properties // Nanotechnology. 2011. V. 22. P. 265102.
- Martin J.E., Anderson R.A. Chain model of electrorheology // J. Chem. Phys. 1996. V. 104. № 12. P. 4814–4827.
- Klinkenberger D.J., Zukoski C.F. Studies of the steady-shear behavior of electrorheological suspension // Langmuir. 1990. V. 6. P. 15–24
- de Gans B.-J., Hoekstra H., Mellema J. Non-linear magnetorheological behavior of an inverse ferrofluids // Faraday Discuss. 1999. V. 112. P. 209–224.
- Lemair E., Meuner A., Bossis G., Liu J., Felt D., Bashtovoi V., Matoussevitch N. Influence of the particles size on the rheology of magnetorheological fluids // J. Rheology. 1995. V. 39. № 5. P. 1011–1020.
- Jiles D. Introduction to Magnetism and Magnetic Materials, Chapman & Hill, London, 1991.
- Bozorth R.M. Ferromagnetism, Wiley, New York, 1993.
- Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Физматлит, 2003.
- Zubarev A.Yu., Iskakova L.Yu. On the theory of rheological properties of magnetic suspensions // Physica A. 2007. V. 382. P. 378–388.
- Borin D.Yu., Zubarev A.Yu., Chirikov D.N., Odenbach S. Stress relaxation in a ferrofluid with clustered nanoparticles // J. Phys.: Condens. Matter. 2014 V. P. 406002.
- Покровский В.Н. Статистическая гидромеханика разбавленных суспензий. М.: Наука, 1978. 136 с.
- Zubarev A.Yu., Fleisher J., Odenbach S. Towards a theory of dynamical properties of polydisperse magnetic fluids: effect of chain-like aggregates // Physica A. 2005. V. 358. P. 475–491.
Supplementary files
