EFFECT OF THE HYDRODYNAMIC CONDITIONS FOR SODIUM ALGINATE–PAPAIN COLLOIDAL SYSTEM SYNTHESIS ON THE SORPTION PROPERTIES OF THE BIOCOMPOSITE

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The regularities have been studied for the formation of molecular associates upon the introduction of papain into a sodium alginate colloidal solution in the laminar low-speed, transient, and turbulent stirring regimes. The relationship between variations in the sorption capacity of the biopolymer composition and the kinetic regularities of the interphase transfer has been studied during the sorption binding of albumin, which is one of the protein-based components of wound exudates, with such components being subject to ensimatic cleavage. The state of the dispersed phase of the colloidal solutions has been estimated by the dynamic light scattering method. The properties of the formed biopolymer films have been studied using the methods of scanning electron microscopy, low-temperature nitrogen adsorption, and static albumin sorption from solutions of limited volumes. The data of the sorption experiments have been analyzed using the Boyd, Morris–Weber, and gel diffusion models, as well as the Lagergren pseudo-first-order and Ho–McKay pseudo-second-order kinetic models. The data have been obtained for substantiating the dosages of the biopolymermatrix used on wound-healing bandages and for the efficient binding of wound necrotic contamination during the time preset according to the technical requirements.

Sobre autores

S. KOKSHAROV

Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russia

Email: svetlana19750710@gmail.com
Россия, 153045, Иваново, ул. Академическая, 1

O. LEPILOVA

Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russia

Email: svetlana19750710@gmail.com
Россия, 153045, Иваново, ул. Академическая, 1

S. ALEEVA

Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russia

Email: svetlana19750710@gmail.com
Россия, 153045, Иваново, ул. Академическая, 1

G. KRICHEVSKII

OOO NPO Tekstil’progress, Engineering Academy, Moscow, Russia

Email: svetlana19750710@gmail.com
Россия, 115093, Москва, ул. Павловская, 21

YU. FIDOROVSKAYA

OOO Koleteteks, Moscow, 115093 Russia

Email: svetlana19750710@gmail.com
Россия, 115093, Москва, ул. Павловская, 21

N. OLTARZHEVSKAYA

OOO Koleteteks, Moscow, 115093 Russia

Autor responsável pela correspondência
Email: svetlana19750710@gmail.com
Россия, 115093, Москва, ул. Павловская, 21

Bibliografia

  1. Zhang H., Cheng J., Ao Q. Preparation of alginate-based biomaterials and their applications in biomedicine // Marine Drugs. 2021. V. 19. № 5. P. 264. https://doi.org/10.3390/md19050264
  2. Abourehab M.A., Rajendran R.R., Singh A., Pramanik S., Shrivastav P., Ansari M.J., Manne R., Amaral L.S., Deepak A. Alginate as a promising biopolymer in drug delivery and wound healing: A review of the state-of-the-art // Int. J. Mol. Sci. 2022. V. 23. № 16. P. 9035. https://doi.org/10.3390/ijms23169035
  3. Liu Z., Chen X., Huang Z., Wang H., Cao S., Liu C., Yan H., Lin Q. One-pot synthesis of amphiphilic biopolymers from oxidized alginate and self-assembly as a carrier for sustained release of hydrophobic drugs // Polymers. 2022. V. 14. № 4. P. 694. https://doi.org/10.3390/polym14040694
  4. Ilgin P., Ozay H., Ozay O. Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier // J. Polym. Res. 2020. V. 27. P. 251. https://doi.org/10.1007/s10965-020-02231-0
  5. Roquero D.M., Smutok O., Othman A., Melman A., Katz E. “Smart” delivery of monoclonal antibodies from a magnetic responsive microgel nanocomposite // ACS Appl. Bio Mater. 2021. V. 4. P. 8487–8497. https://doi.org/10.1021/acsabm.1c00994
  6. Roquero D.M., Katz E. “Smart” alginate hydrogels in biosensing, bioactuation and biocomputing: State-of-the-art and perspectives // Sensors and Actuators Reports. 2022. V. 4. P. 100095. https://doi.org/10.1016/j.snr.2022.100095
  7. Zhao Q., Li C., Shum H.C., Du X. Shape-adaptable biodevices for wearable and implantable applications // Lab Chip. 2020. V. 20. P. 4321–4341. https://doi.org/10.1039/d0lc00569j
  8. Biswas A., Bornhoeft L.R., Banerjee S., You Y.H., McShane J. Composite hydrogels containing bioactive microreactors for optical enzymatic lactate sensing // ACS Sens. 2017. V. 2. P. 1584–1588. https://doi.org/10.1021/acssensors.7b00648
  9. Roquero D.M., McCorduck B., Bollella P., Smutok O., Melman A., Katz E. Biomolecule release from alginate composite hydrogels triggered by logically processed signals // ChemPhysChem. 2021. V. 22. № 19. P. 1967–1977. https://doi.org/10.1002/cphc.202100458
  10. Poncelet D. Production of alginate beads by emulsification/internal gelation // Ann. N. Y. Acad. Sci. 2001. V. 944. P. 74–82. https://doi.org/10.1111/j.1749-6632.2001.tb03824.x
  11. Orue I.G., Vizcaíno E.S., Sanchez P., Gutierrez F.B., Anda J.J.A., Hernandez R.M., Igartua M. Bioactive and degradable hydrogel based on human platelet-rich plasma fibrin matrix combined with oxidized alginate in a diabetic mice wound healing model // Mater. Sci. Eng. C. 2022. V. 135. № 1. P. 112695. https://doi.org/10.1016/j.msec.2022.112695
  12. Sivan S.S., Bonstein I., Marmor Y.N., Amit M. Encapsulation of human-bone-marrow-derived mesenchymal stem cells in small alginate beads using one-step emulsification by internal gelation: In vitro, and in vivo evaluation in degenerate intervertebral disc model // Pharmaceutics. 2022. V. 4. № 6. P. 1179. https://doi.org/10.3390/pharmaceutics14061179
  13. Abouzeid R.E., Khiari R., Salama A., Diab M., Beneventi D., Dufresne A. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing // Int. J. Biol. Macromol. 2020. V. 160. P. 538–547. https://doi.org/10.1016/j.ijbiomac.2020.05.181
  14. Sardelli L., Tunesi M., Briatico-Vangosa F., Petrini P. 3D-Reactive printing of engineered alginate inks // Soft Matter. 2021. V. 17. № 8. P. 8105–8117. https://doi.org/10.1039/D1SM00604E
  15. Siwal S.S., Mishra K., Saini A.K., Alsanie W., Kovalcik A., Thakur K. Additive manufacturing of bio-based hydrogel composites: Recent advances // J. Polym. Environ. 2022. V. 30. P. 4501–4516. https://doi.org/10.1007/s10924-022-02516-z
  16. Varaprasad K., Jayaramudu T., Kanikireddy V., Toro C., Sadiku E.R. Alginate-based composite materials for wound dressing application: A mini review // Carbohy-dr. Polym. 2020. V. 236. P. 116025. https://doi.org/10.1016/j.carbpol.2020.116025
  17. Pereira R., Carvalho A., Vaz D.C., Gil M.H., Mendes A., Bártolo P. Development of novel alginate based hydrogel films for wound healing applications // Int. J. Biol. Macromol. 2013. V. 52. P. 221–230. https://doi.org/10.1016/j.ijbiomac.2012.09.031
  18. Soleimanpour M., Mirhaji S.S., Jafari S., Derakhshankhah H., Mamashli F., Nedaei H., Karimi M.R., Motasadizadeh H., Fatahi Y., Ghasemi A., Nezamtaheri M., Mohadese K., Teimouri M., Goliaei B., Delattre C., Saboury A.A. Designing a new alginate-fibrinogen biomaterial composite hydrogel for wound healing // Sci. Rep. 2022. V. 12. P. 7213. https://doi.org/10.1038/s41598-022-11282-w
  19. Su Y., Yrastorza J., Matis M., Cusick J., Zhao S., Wang G., Xie J. Biofilms: Formation, research models, potential targets, and methods for prevention and treatment // Adv. Sci. 2022. V. 9. № 29. P. 2203291. https://doi.org/10.1002/advs.202203291
  20. Balakireva A.V., Kuznetsova N.V., Petushkova A.I., Savvateeva L.V., Zamyatnin A.A. Trends and prospects of plant proteases in therapeutics // Curr. Med. Chem. 2019. V. 26. № 3. P. 465–486. https://doi.org/10.2174/0929867325666171123204403
  21. Фидоровская Ю.С., Медушева Е.О., Коровина М.А., Кричевский Г.Е., Олтаржевская Н.Д Особенности технологии получения раневых покрытий с протеолитическим и антимикробным действием // Известия вузов. Технология текстильной промышленности. 2021. Т. 395. № 5. С. 137–143. https://doi.org/10.47367/0021-3497_2021_5_137
  22. Кокшаров С.А., Алеева С.В., Лепилова О.В., Кричевский Г.Е., Фидоровская Ю.С. Свойства гидроколлоидов альгината натрия при сорбционном связывании папаина // Коллоид. журн. 2021. Т. 83. № 6. С. 660–675. https://doi.org/10.31857/S0023291221060070
  23. Бирштейн T.M. Конформации макромолекул и внутримолекулярные конформационные переходы // Высокомол. соединения. Сер. A. 2019. Т. 61. № 6. С. 542–552.
  24. Derkach S.R., Voron’ko N.G., Sokolan N.I., Kolotova D.S., Kuchina Y.A. Interactions between gelatin and sodium alginate: UV and FTIR studies // J. Dispers. Sci. Technol. 2020. V. 41. № 5. P. 182617031. https://doi.org/10.1080/01932691.2019.1611437
  25. Feng L., Cao Y., Xu D., You S., Han F. The ultrasound technology for modifying enzyme activity // Ultrason. Sonochem. 2016. V. 32. P. 145–150. https://doi.org/10.17268/sci.agropecu.2016.02.07
  26. Boyd G.E., Adamson A.W., Myers L.S. The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics // J. Am. Chem. Soc. 1947. V. 69. № 11. P. 2836–2848. https://doi.org/10.1021/ja01203a066
  27. Крижановская О.О., Синяева Л.А., Карпов С.И., Селеменев В.Ф., Бородина Е.В., Рёсснер Ф. Кинетические модели при описании сорбции жирорастворимых физиологически активных веществ высокоупорядоченными неорганическими кремнийсодержащими материалами // Сорбционные и хроматографические процессы. 2014. Т. 14. № 5. С. 784–794.
  28. Weber J.W.J., Morris J.C. Kinetics of adsorption on carbon from solution // J. Sanitary Eng. Division. 1963. V. 89. № 2. P. 31–60.
  29. Lagergren S. About the theory of so-called adsorption of soluble substances // Kung Sven Veten Hand. 1898. V. 24. № 4. P. 1–39.
  30. Ho Y.S., Ng J.C.Y., McKay G. Kinetics of pollutant sorption by biosorbents: Review // Sep. Purif. Methods. 2000. V. 29. № 2. P. 189–232. https://doi.org/10.1081/SPM-100100009
  31. Javadian H. Application of kinetic, isotherm and thermodynamic models for the adsorption of Co(II) ions on polyaniline/polypyrrole copolymer nanofibers from aqueous solution // J. Ind. Eng. Chem. 2014. V. 20. № 6. P. 4233–4241. https://doi.org/10.1016/j.jiec.2014.01.026
  32. Turner B., Henley B.J., Sleap S., Sloan, S.W. Kinetic model selection and the Hill model in geochemistry // Int. J. Environ. Sci. Techn. 2015. V. 12. № 8. P. 2545–2558. https://doi.org/10.1007/s13762-014-0662-4
  33. Hubbe M., Azizian S., Douven S. Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review // Bioresources. 2019. V. 14. № 3. P. 7582–7686. https://doi.org/10.15376/biores.14.3.7582-7626
  34. Kornilova N., Koksharov S., Aleeva S., Lepilova O., Bikbulatova A., Nikiforova E. Enterosorbents based on rhubarb biomass with a hybrid polymer-inorganic coating for the immobilization of azaheterocyclic mycotoxins // Coatings. 2023. V. 13. № 4. P. 684. https://doi.org/10.3390/coatings13040684
  35. Кокшаров С.А., Алеева С.В., Лепилова О.В. Влияние строения пектиновых веществ льняных кормовых добавок на абсорбционное связывание азагетероциклических микотоксинов // Рос. хим. журн. 2021. Т. 65. № 1. С. 12–35. https://doi.org/10.6060/rcj.2021651.2
  36. Кокшаров С.А., Алеева С.В., Лепилова О.В. Кинетика сорбции теофиллина в гидрогелях пектинов с различающимися структурными свойствами // Журн. физ. химии. 2022. Т. 96. № 4. С. 562–569. https://doi.org/10.31857/S0044453722040161
  37. Yan Y.D., Clarke J.H.R. In-situ determination of particle size distributions in colloids // Adv. Colloid Interface Sci. 1989. V. 29. P. 277–318. https://doi.org/10.1016/0001-8686(89)80011-9
  38. Кокшаров С.А. О применении метода динамического светового рассеяния для оценки размера наночастиц в бикомпонентном гидрозоле // Известия вузов. Химия и химическая технология. 2015. Т. 58. № 1. С. 33–36.
  39. Chatterjee A., Schiewer S. Multi-resistance kinetic models for biosorption of Cd by raw and immobilized citrus peels in batch and packed-bed columns // Chem. Eng. J. 2014. V. 224. P. 105–116. https://doi.org/10.1016/j.cej.2013.12.017
  40. Kim T., An B. Effect of hydrogen ion presence in adsorbent and solution to enhance phosphate adsorption // Appl. Sci. 2021. V. 11. P. 2777. https://doi.org/10.3390/app11062777
  41. Сазонова В.Ф., Перлова О.В., Перлова Н.А., Поликарпов А.П. Сорбция соединений урана(VI) на поверхности волокнистого анионита из водных растворов // Коллоид. журн. 2017. Т. 79. № 2. С. 219–226. https://doi.org/10.7868/S0023291217020136
  42. Маслова М.В., Иваненко В.И., Герасимова Л.Г. Влияние температуры на кинетику сорбции катионов стронция сорбентом на основе фосфата титана // Журн. физ. хим. 2019. Т. 93. № 7. С. 1002–1008. https://doi.org/10.1134/S0044453719060219
  43. Полянский Н.Г., Горбунов Г.В., Полянская Н.Л. Методы исследования ионитов. М.: Химия, 1976.
  44. Viegas R.M.C., Campinas M., Costa H., Rosa, M.J. How do the HSDM and Boyd’s model compare for estimating intraparticle diffusion coefficients in adsorption processes // Adsorption. 2014. V. 20. № 5–6. P. 737–746. https://doi.org/10.1007/s10450-014-9617-9
  45. Moussout H., Ahlafi H., Aazza M., Maghat H. Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models // Karbala Int. J. Modern Sci. 2018. V. 4. P. 244–254. https://doi.org/10.1016/j.kijoms.2018.04.001
  46. Алеева С.В., Лепилова О.В., Кокшаров С.А. Закономерности сорбции паров крезола на высокопористых материалах из биомодифицированной льняной костры // Физикохимия поверхности и защита материалов. 2022. Т. 58. № 1. С. 16–25. https://doi.org/10.31857/S0044185622010028
  47. Kaszuba M., McKnight D., Connah M.T., McNeil-Watson F.K., Nobbmann U. Measuring sub nanometre sizes using dynamic light scattering // J. Nanopart. Res. 2008. V. 10. P. 823–829. https://doi.org/10.1007/s11051-007-9317-4
  48. Грег С., Синг К. Адсорбция, удельная поверхность, пористость / Пер. с англ. под ред. К.В. Чмутова. М.: Мир, 1970.
  49. Morris E.R., Powell D.A., Gidley M.J., Rees D.A. Conformations and interactions of pectins: I. Polymorphism between gel and solid states of calcium polygalacturonate // J. Mol. Biol. 1982. V. 155. № 4. P. 507–516. https://doi.org/10.1016/0022-2836(82)90484-3
  50. Maslova M., Ivanenko V., Evstropova P., Mudruk N., Gerasimova L. Investigation on purification of saturated LiNO3 solution using titanium phosphate ion exchanger: Kinetics study // Int. J. Mol. Sci. 2022. V. 23. P. 13416. https://doi.org/10.3390/ijms232113416
  51. Ermolenko A., Shevelev A., Vikulova M., Blagova T., Altukhov S., Gorokhovsky A., Godymchuk A., Burmistrov I., Offor P.O. Wastewater treatment from lead and strontium by potassium polytitanates: Kinetic analysis and adsorption mechanism // Processes. V. 8. № 2. P. 217. https://doi.org/10.3390/pr8020217
  52. Ma Y., Zhang B., Ma H, Yu M., Li L., Li J. Polyethylenimine nanofibrous adsorbent for highly effective removal of anionic dyes from aqueous solution // Sci. China Mater. 2016. V. 59. № 1. P. 38–50. https://doi.org/10.1007/s40843-016-0117-y
  53. Campos N.F., Barbosa C.M., Rodrıguez-Dıaz J.M., Duarte M.M. Removal of naphthenic acids using activated charcoal: Kinetic and equilibrium studies // Adsorp. Sci. Technol. 2018. V. 36. № 7–8. P. 1405–1421. https://doi.org/10.1177/0263617418773844
  54. Петрова Ю.С., Пестов А.В., Алифханова Л.М.К., Неудачина Л.К. Динамика сорбции меди(II) и серебра(I) материалами на основе N-2-сульфоэтилхитозана с различной степенью сшивки // Журн. физ. химии. 2017. Т. 91. № 4. С. 720–724. https://doi.org/10.7868/S0044453717040239
  55. Koksharov S.A., Aleeva S.V, Lepilova O.V. Description of adsorption interactions of lead ions with functional groups of pectin-containing substances // J. Molecular Liquids. 2019. V. 283. P. 606. https://doi.org/10.1016/j.molliq.2019.03.109

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (255KB)
4.

Baixar (1MB)
5.

Baixar (368KB)
6.

Baixar (180KB)
7.

Baixar (186KB)
8.

Baixar (100KB)

Declaração de direitos autorais © С.А. Кокшаров, О.В. Лепилова, С.В. Алеева, Г.Е. Кричевский, Ю.С. Фидоровская, Н.Д. Олтаржевская, 2023