Models for Stabilization of Charged Particles with Surfactants in Nonpolar Media
- Authors: Popovetskiy P.S.1
-
Affiliations:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
- Issue: Vol 85, No 6 (2023)
- Pages: 806-817
- Section: Articles
- Submitted: 27.02.2025
- Published: 01.11.2023
- URL: https://cijournal.ru/0023-2912/article/view/671213
- DOI: https://doi.org/10.31857/S0023291223600621
- EDN: https://elibrary.ru/HDBQJI
- ID: 671213
Cite item
Abstract
Stabilization of charged particles in nonpolar media is one of the most complicated problems in modern colloid chemistry. The attribution to colloid chemistry is absolutely justified in this case: in nonpolar media, charged particles have, as a rule, a supramolecular nature. Low dielectric permittivity of a medium makes the existence of ions in the classical interpretation energetically disadvantageous. The key condition for the presence of charged particles in nonpolar media is their steric stabilization, which requires some revision of the classical concepts of the structure of the electrical double layer, primarily, its diffuse part. Detailed analyzing the structure of the electrical double layer in nonpolar media is of importance because of the high practical significance of electrokinetic phenomena in such systems. This review considers the main models for steric stabilization of charged particles with surfactants in dispersion media having dielectric permittivities lower than 5. The main attention is focused on not only the concentrations corresponding to the formation of reverse micelles, but also on the concentrations below the critical micelle concentration. In addition, nontypical examples of electrokinetic phenomena in organosols are considered.
About the authors
P. S. Popovetskiy
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
Author for correspondence.
Email: popovetskiy@niic.nsc.ru
Россия, 630090, Новосибирск,
пр. ак. Лаврентьева, 3
References
- Mer V.K., Downes H.C. Indicator studies of acids and bases in benzene // Chem. Rev. 1933. V. 13. № 1. P. 47–60. https://doi.org/10.1021/cr60044a004
- Fuoss R.M. Properties of electrolytic solutions // Chemical Reviews. 1935. V. 17. № 1. P. 27–42. https://doi.org/10.1021/cr60056a002
- Mer V.K., Downes H.C. Acidity in non-aqueous solvents. Conductimetric and electrometric titrations of acids and bases in benzene // Journal of the American Chemical Society. 1931. V. 53. № 3. P. 888–896. https://doi.org/10.1021/ja01354a009
- Mer V.K., Downes H.C. Indicator studies of acids and bases in benzene // Journal of the American Chemical Society. 1933. V. 55. № 5. P. 1840–1864. https://doi.org/10.1021/ja01332a010
- Strong L.E., Kraus C.A. Properties of electrolytic solutions. XLV. Conductance of some salts in benzene at higher concentrations // Journal of the American Chemical Society. 1950. V. 72. № 1. P. 166–171. https://doi.org/10.1021/ja01157a047
- van der Minne J.L., Hermanie P.H.J. Electrophoresis measurements in benzene-correlation with stability. I. Development of method // Journal of Colloid Science. 1952. V. 7. № 6. P. 600–615. https://doi.org/10.1016/0095-8522(52)90042-1
- Scher H., Shlesinger M.F., Bendler J.T. Time-scale invariance in transport and relaxation // Physics Today. 1991. V. 44. № 1. P. 26–34. https://doi.org/10.1063/1.881289
- Beunis F., Strubbe F., Neyts K. et al. Power-law transient charge transport in a nonpolar liquid // Applied Physics Letters. 2007. V. 90. № 18. https://doi.org/10.1063/1.2734511
- Matsubara Y., Matsushima S., Jones T.B. Charge accumulation in an oil tank during loading operations // Journal of Electrostatics. 1997. V. 40. P. 191–197. https://doi.org/10.1016/S0304-3886(97)00036-3
- Perisse F., Vazquez J., Paillat T. et al. Gasoline electrification: Moisture and temperature influence // Journal of Electrostatics. 2005. V. 63. № 6–10. P. 481–487. https://doi.org/10.1016/j.elstat.2005.03.006
- Sun K., Liu Q., Li X. Simulation test on charge density and surface potential in an oil tank during filling operation // Journal of Electrostatics. 2009. V. 67. № 2–3. P. 340–341. https://doi.org/10.1016/j.elstat.2009.01.043
- Kim J., Anderson J.L., Garoff S. et al. Ionic conduction and electrode polarization in a doped nonpolar liquid // Langmuir. 2006. V. 22. № 18. P. 7942. https://doi.org/10.1021/la061883w
- Patel M.N., Smith P.G., Kim J. et al. Electrophoretic mobility of concentrated carbon black dispersions in a low-permittivity solvent by optical coherence tomography // Journal of Colloid and Interface Science. 2010. V. 345. № 2. P. 194–199. https://doi.org/10.1016/j.jcis.2010.01.055
- Thwala J.M., Goodwin J.W., Mills P.D. Electrokinetic studies of colloidal silica particles dispersed in non-aqueous media in the presence of a nonionic surfactant, dodecylhexaethylene glycol monoether (C12E6) // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2009. V. 335. № 1–3. P. 33–42. https://doi.org/10.1016/j.colsurfa.2008.10.050
- Novotny V. Contributions of particles to electrical conductivity of colloids // Colloids and Surfaces. 1986. V. 21. P. 219–233. https://doi.org/10.1016/0166-6622(86)80093-2
- Espinosa C.E., Guo Q., Singh V. et al. Particle charging and charge screening in nonpolar dispersions with nonionic surfactants // Langmuir. 2010. V. 26. № 22. P. 16941–16948. https://doi.org/10.1021/la1033965
- Zhang Z., Wang Y., Chen Q. et al. Application of high potential electrophoretic particles modified with high ionization mono ionic liquid for electrophoretic displays // Micromachines. 2022. V. 13. № 8. P. 1235. https://doi.org/10.3390/mi13081235
- Gao A., Cao M., Yan J. et al. Research on electrophoretic display ink and its microencapsulation // Lecture Notes in Electrical Engineering. 2019. V. 543. P. 788–793. https://doi.org/10.1007/978-981-13-3663-8_106
- Morrison I.D. Electrical charges in nonaqueous media // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1993. V. 71. № 1. P. 1–37. https://doi.org/10.1016/0927-7757(93)80026-B
- Fertig D., Sarkadi Z., Valiskó M. et al. Scaling for rectification of bipolar nanopores as a function of a modified Dukhin number: The case of 1 : 1 electrolytes // Molecular Simulation. 2022. V. 48. № 1. P. 43–56. https://doi.org/10.1080/08927022.2021.1939330
- Vaitheeswaran S., Reddy G., Thirumalai D. Water-mediated interactions between hydrophobic and ionic species in cylindrical nanopores // Journal of Chemical Physics. 2009. V. 130. № 9. P. 094502. https://doi.org/10.1063/1.3080720
- Prieve D.C., Yezer B.A., Khair A.S. et al. Formation of charge carriers in liquids // Advances in Colloid and Interface Science. 2017. V. 244. P. 21–35. https://doi.org/10.1016/j.cis.2016.11.004
- Smith G.N., Eastoe J. Controlling colloid charge in nonpolar liquids with surfactants // Physical Chemistry Chemical Physics. 2013. V. 15. № 2. P. 424–439. https://doi.org/10.1039/c2cp42625k
- Varela L., Andraus S., Trizac E. et al. Relaxation dynamics of two interacting electrical double-layers in a 1D Coulomb system // Journal of Physics Condensed Matter. 2021. V. 33. № 39. https://doi.org/10.1088/1361-648X/ac1237
- Eyvazi N., Biagooi M., Nedaaee Oskoee S.E. Molecular dynamics investigation of charging process in polyelectrolyte-based supercapacitors // Scientific Reports. 2022. V. 12. № 1. P. 1098. https://doi.org/10.1038/s41598-022-04837-4
- Dukhin A.S., Goetz P.J. How non-ionic “electrically neutral” surfactants enhance electrical conductivity and ion stability in non-polar liquids // Journal of Electroanalytical Chemistry. 2006. V. 588. № 1. P. 44–50. https://doi.org/10.1016/j.jelechem.2005.12.001
- Peri J.B. The state of solution of aerosol OT in nonaqueous solvents // Journal of Colloid and Interface Science. 1969. V. 29. № 1. P. 6–15. https://doi.org/10.1016/0021-9797(69)90340-3
- Kotlarchyk M., Chen S.H., Huang J.S. et al. Structure of three-component microemulsions in the critical region determined by small-angle neutron scattering // Physical Review A. 1984. V. 29. № 4. P. 2054–2069. https://doi.org/10.1103/PhysRevA.29.2054
- Kotlarchyk M., Huang J.S., Chen S.H. Structure of AOT reversed micelles determined by small-angle neutron scattering // Journal of Physical Chemistry. 1985. V. 89. № 20. P. 4382–4386. https://doi.org/10.1021/j100266a046
- Zhang J., Bright F.V. Nanosecond reorganization of water within the interior of reversed micelles revealed by frequency-domain fluorescence spectroscopy // Journal of Physical Chemistry. 1991. V. 95. № 20. P. 7900–7907. https://doi.org/10.1021/j100173a064
- Eicke H.-F., Christen H. Is water critical to the formation of micelles in apolar media?? // Helvetica Chimica Acta. 1978. V. 61. № 6. P. 2258–2263. https://doi.org/10.1002/hlca.19780610631
- Fowkes F.M., Lloyd T.B., Chen W.-J. et al. Zeta-potentials and heats of adsorption of charge-control agents on liquid toners // Proc. SPIE 1253. Hard Copy and Printing Materials, Media, and Processes. 1990. V. 1253. P. 52−62.https://doi.org/10.1117/12.19840
- Birkett K.L., Gregory P. Metal complex dyes as charge control agents // Dyes and Pigments. 1986. V. 7. № 5. P. 341–350. https://doi.org/10.1016/0143-7208(86)80002-X
- Strubbe F., Beunis F., Neyts K. Detection of elementary charges on colloidal particles // Physical Review Letters. 2008. V. 100. № 21. P. 218301. https://doi.org/10.1103/PhysRevLett.100.218301
- Hogg R., Healy T.W., Fuerstenau D.W. Mutual coagulation of colloidal dispersions // Transactions of the Faraday Society. 1966. V. 62. № 615. P. 1638–1651. https://doi.org/10.1039/tf9666201638
- Haoping W., Jun J., Blum L. Improvement on the Derjaguin’s method for the interaction of spherical particles // Colloid and Polymer Science. 1995. V. 273. № 4. P. 359–363. https://doi.org/10.1007/BF00652350
- Bowen R.W., Filippov A.N., Sharif A.O. et al. Model of the interaction between a charged particle and a pore in a charged membrane surface // Advances in Colloid and Interface Science. 1999. V. 81. № 1. P. 35–72. https://doi.org/10.1016/S0001-8686(99)00004-4
- Sun J., Velamakanni B.V., Gerberich W.W. et al. Aqueous latex/ceramic nanoparticle dispersions: Colloidal stability and coating properties // Journal of Colloid and Interface Science. 2004. V. 280. № 2. P. 387–399. https://doi.org/10.1016/j.jcis.2004.08.014
- Bulavchenko A.I., Popovetskiy P.S. Structure of adsorption layer of silver nanoparticles in sodium bis(2-ethylhexyl) sulfosuccinate solutions in n-decane as observed by photon-correlation spectroscopy and nonaqueous electrophoresis // Langmuir. 2014. V. 30. № 43. P. 12729–12735. https://doi.org/10.1021/la5004935
- Brown M.A., Abbas Z., Kleibert A. et al. Determination of surface potential and electrical double-layer structure at the aqueous electrolyte-nanoparticle interface // Physical Review X. 2016. V. 6. № 1. P. 011007. https://doi.org/10.1103/PhysRevX.6.011007
- Dukhin A.S., van de Ven T.G.M. Electrokinetic characterization of polydisperse colloidal particles // Journal of Colloid and Interface Science. 1994. V. 165. № 1. P. 9–18. https://doi.org/10.1006/jcis.1994.1200
- Bulavchenko A.I., Pletnev D.N. Electrophoretic concentration of nanoparticles of gold in reversed micellar solutions of AOT // Journal of Physical Chemistry C. 2008. V. 112. № 42. P. 16365–16369. https://doi.org/10.1021/jp805268w
- Strubbe F., Beunis F., Neyts K. Determination of the effective charge of individual colloidal particles // Journal of Colloid and Interface Science. 2006. V. 301. № 1. P. 302–309. https://doi.org/10.1016/j.jcis.2006.04.034
- Bulavchenko A.I., Popovetsky P.S. Electrokinetic potential of nanoparticles in reverse AOT micelles: Photometric determination and role in the processes of heterocoagulation, separation, and concentration // Langmuir. 2010. V. 26. № 2. P. 736–742. https://doi.org/10.1021/la903583r
- Poovarodom S., Poovarodom S., Berg J.C. Effect of alkyl functionalization on charging of colloidal silica in apolar media // Journal of Colloid and Interface Science. 2010. V. 351. № 2. P. 415–420. https://doi.org/10.1016/j.jcis.2010.07.058
- Poovarodom S., Berg J.C. Effect of particle and surfactant acid-base properties on charging of colloids in apolar media // Journal of Colloid and Interface Science. 2010. V. 346. № 2. P. 370–377. https://doi.org/10.1016/j.jcis.2010.03.012
- Tscharnuter W.W., McNeil-Watson F., Fairhurst D. A new instrument for the measurement of very small electrophoretic mobilities using phase analysis light scattering // ACS Symposium Series. 1998. V. 693. P. 327–340. https://doi.org/10.1021/bk-1998-0693.ch023
- Thomas J.C., Crosby B.J., Keir R.I. et al. Observation of field-dependent electrophoretic mobility with phase analysis light scattering (PALS) // Langmuir. 2002. V. 18. № 11. P. 4243–4247. https://doi.org/10.1021/la011758e
- Vinogradova O.I., Silkina E.F., Asmolov E.S. Transport of ions in hydrophobic nanotubes // Physics of Fluids. 2022. V. 34. № 12. https://doi.org/10.1063/5.0131440
- Sainis S.K., Merrill J.W., Dufresne E.R. Electrostatic interactions of colloidal particles at vanishing ionic strength // Langmuir. 2008. V. 24. № 23. P. 13334–13337. https://doi.org/10.1021/la8024606
- Park J.K., Ryu J.C., Kim W.K. et al. Effect of electric field on electrical conductivity of dielectric liquids mixed with polar additives: DC conductivity // Journal of Physical Chemistry B. 2009. V. 113. № 36. P. 12271–12276. https://doi.org/10.1021/jp9015189
- Hsu M.F., Dufresne E.R., Weitz D.A. Charge stabilization in nonpolar solvents // Langmuir. 2005. V. 21. № 11. P. 4881–4887. https://doi.org/10.1021/la046751m
- Nave S., Eastoe J., Penfold J. What is so special about aerosol-OT? 1. Aqueous systems // Langmuir. 2000. V. 16. № 23. P. 8733–8740. https://doi.org/10.1021/la000341q
- Nave S., Eastoe J., Heenan R.K. et al. What is so special about aerosol-OT? 2. Microemulsion systems // Langmuir. 2000. V. 16. № 23. P. 8741–8748. https://doi.org/10.1021/la000342i
- Nave S., Eastoe J., Heenan R.K. et al. What is so special about aerosol-OT? Part III – Glutaconate versus sulfosuccinate headgroups and oil−water interfacial tensions // Langmuir. 2002. V. 18. № 5. P. 1505–1510. https://doi.org/10.1021/la015564a
- Nave S., Paul A., Eastoe J. et al. What is so special about aerosol-OT? Part IV. Phenyl-tipped surfactants // Langmuir. 2005. V. 21. № 22. P. 10021–10027. https://doi.org/10.1021/la050767a
- Bulavchenko A.I., Podlipskaya T.Y., Demidova M.G. et al. The formation of Me(AOT)n micelles as nanoreactors, crystallizers, and charging agents: Cation-exchange solvent extraction versus direct injection solubilization // Solvent Extraction and Ion Exchange. 2020. V. 38. № 4. P. 455–471. https://doi.org/10.1080/07366299.2020.1733747
- Fioretto D., Freda M., Mannaioli S. et al. Infrared and dielectric study of Ca(AOT)2 reverse micelles // Journal of Physical Chemistry B. 1999. V. 103. № 14. P. 2631–2635. https://doi.org/10.1021/jp9837028
- Petit C., Lixon P., Pileni M.P. In situ synthesis of silver nanocluster in AOT reverse micelles // Journal of Physical Chemistry. 1993. V. 97. № 49. P. 12974–12983. https://doi.org/10.1021/j100151a054
- Lisiecki I., André P., Filankembo A. et al. Mesostructured fluids. 1. Cu(AOT)2−H2O−isooctane in oil rich regions // Journal of Physical Chemistry B. 1999. V. 103. № 43. P. 9168–9175. https://doi.org/10.1021/jp991242s
- Tanori J., Gulik-Krzywicki T., Pileni M.P. Phase diagram of copper(II) bis(2-ethylhexyl) sulfosuccinate, Cu(AOT)2–isooctane–water // Langmuir. 1997. V. 13. № 4. P. 632–638. https://doi.org/10.1021/la960427c
- Smith G.N., Brown P., James C. et al. The effects of counterion exchange on charge stabilization for anionic surfactants in nonpolar solvents // Journal of Colloid and Interface Science. 2016. V. 465. P. 316–322. https://doi.org/10.1016/j.jcis.2015.11.062
- Eastoe J., Fragneto G., Robinson B.H. et al. Variation of surfactant counterion and its effect on the structure and properties of aerosol-OT-based water-in-oil microemulsions // Journal of the Chemical Society, Faraday Transactions. 1992. V. 88. № 3. P. 461–471. https://doi.org/10.1039/FT9928800461
- Bulavchenko A.I., Shaparenko N.O., Kompan’kov N.B. et al. The formation of free ions and electrophoretic mobility of Ag and Au nanoparticles in n-hexadecane-chloroform mixtures at low concentrations of AOT // Physical Chemistry Chemical Physics. 2020. V. 22. № 26. P. 14671–14681. https://doi.org/10.1039/d0cp02153a
- Strubbe F., Neyts K. Charge transport by inverse micelles in non-polar media // Journal of Physics Condensed Matter. 2017. V. 29. № 45. P. 453003.https://doi.org/10.1088/1361-648X/aa8bf6
- Park E., Lee S., Lee H. et al. Full-color electrophoretic display using charged colloidal arrays of core–shell microspheres with enhanced color tunability in non-polar medium // Advanced Optical Materials. 2021. V. 9. № 21. P. 2100833. https://doi.org/10.1002/adom.202100833
- Shaparenko N.O., Beketova D.I., Demidova M.G. et al. Regulation of the charge and hydrodynamic diameter of silica nanoparticles in AOT microemulsions // Colloid Journal. 2019. V. 81. № 1. P. 43–49. https://doi.org/10.1134/S1061933X19010101
- Lee J. Charge carriers created by interaction of a nonionic surfactant with water in a nonpolar medium // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2018. V. 554. P. 211–217. https://doi.org/10.1016/j.colsurfa.2018.06.050
- Parent M.E., Yang J., Jeon Y. et al. Influence of surfactant structure on reverse micelle size and charge for nonpolar electrophoretic inks // Langmuir. 2011. V. 27. № 19. P. 11845–11851. https://doi.org/10.1021/la202660d
- Pugh R.J., Matsunaga T., Fowkes F.M. The dispersibility and stability of carbon black in media of low dielectric constant. 1. Electrostatic and steric contribution to colloidal stability // Colloids and Surfaces. 1983. V. 7. № 3. P. 183–207. https://doi.org/10.1016/0166-6622(83)80046-8
- Gacek M.M., Berg J.C. Effect of synergists on organic pigment particle charging in apolar media // Electrophoresis. 2014. V. 35. № 12–13. P. 1766–1772. https://doi.org/10.1002/elps.201300593
- Pugh R.J., Fowkes F.M. The dispersibility and stability of carbon black in media of low dielectric constant. 2. Sedimentation volume of concentrated dispersions, adsorption and surface calorimetry studies // Colloids and Surfaces. 1984. V. 9. № 1. P. 33–46. https://doi.org/10.1016/0166-6622(84)80140-7
- Pugh R.J., Fowkes F.M. The dispersibility and stability of coal particles in hydrocarbon media with a polyisobutene succinamide dispersing agent // Colloids and Surfaces. 1984. V. 11. № 3–4. P. 423–427. https://doi.org/10.1016/0166-6622(84)80295-4
- Gacek M.M., Berg J.C. Investigation of surfactant mediated acid-base charging of mineral oxide particles dispersed in apolar systems // Langmuir. 2012. V. 28. № 51. P. 17841–17845. https://doi.org/10.1021/la303943k
- Singh H., Ray D., Kumar S. et al. Probing the adsorption of nonionic micelles on different-sized nanoparticles by scattering techniques // Physical Review E. 2020. V. 102. № 6. P. 062601. https://doi.org/10.1103/PhysRevE.102.062601
- Beunis F., Strubbe F., Marescaux M. et al. Micellization and adsorption of surfactant in a nonpolar liquid in micrometer scale geometries // Applied Physics Letters. 2010. V. 97. № 18. P. 2008–2011. https://doi.org/10.1063/1.3503968
- Popovetskiy P.S. Synthesis and characterization of silver nanoparticles in reverse micelles of nonionic surfactants and in their mixed micelles with AOT // Colloid Journal. 2020. V. 82. № 2. P. 144–151. https://doi.org/10.1134/S1061933X2002009X
- Popovetskiy P.S., Kolodin A.N., Maximovskiy E.A. et al. Electrophoretic concentration and production of conductive coatings from silver nanoparticles stabilized with non-ionic surfactant Span 80 // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 625. P. 126961. https://doi.org/10.1016/j.colsurfa.2021.126961
- Varshosaz J., Pardakhty A., Hajhashemi V.I. et al. Development and physical characterization of sorbitan monoester niosomes for insulin oral delivery // Drug Delivery: Journal of Delivery and Targeting of Therapeutic Agents. 2003. V. 10. № 4. P. 251–262. https://doi.org/10.1080/drd_10_4_251
- Gacek M.M., Berg J.C. Effect of surfactant hydrophile-lipophile balance (HLB) value on mineral oxide charging in apolar media // Journal of Colloid and Interface Science. 2015. V. 449. P. 192–197. https://doi.org/10.1016/j.jcis.2014.11.075
- Ponto B.S., Berg J.C. Nanoparticle charging with mixed reverse micelles in apolar media // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020. V. 586. P. 124275. https://doi.org/10.1016/j.colsurfa.2019.124275
- Yezer B.A., Khair A.S., Sides P.J. et al. Use of electrochemical impedance spectroscopy to determine double-layer capacitance in doped nonpolar liquids // Journal of Colloid and Interface Science. 2015. V. 449. P. 2–12. https://doi.org/10.1016/j.jcis.2014.08.052
- Popovetskiy P., Kasyanov A., Maximovskiy E. et al. Electrophoretic mobility of silver nanoparticles stabilized with nonionic surfactant Ecosurf SA4: Origin of charged particles, concentration by electrophoresis and production of conductive coatings // Journal of Molecular Liquids. 2023. V. 374. P. 121273. https://doi.org/10.1016/j.molliq.2023.121273
Supplementary files
