Влияние условий приложения сдвиговой нагрузки на измеряемую прочность адгезии льда к супергидрофобным поверхностям

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Несмотря на значительный интерес исследователей, обледенение летательных аппаратов, автотранспорта, судов и оборудования при морской нефтедобыче остается актуальной проблемой. В данной работе рассматриваются факторы, способствующие снижению прочности контакта льда с поверхностью при приложении сдвиговой нагрузки. Основное внимание уделено изучению влияния скорости изменения сдвиговых напряжений на разрушение межфазного контакта льда с супергидрофобными покрытиями. Для измерения прочности адгезионного контакта в условиях контролируемого изменения приложенной нагрузки использовалась методика, основанная на отрыве льда с поверхности под действием центробежной силы. Исследование проводилось для больших ансамблей образцов в диапазоне температур от –5 до –20°C, что позволило качественно оценить влияние квазижидкого слоя и эффекта Ребиндера на понижение сдвиговой адгезионной прочности. Полученные результаты свидетельствуют о том, что разрушение контакта льда с супергидрофобным покрытием происходит по смешанному вязко-хрупкому механизму. При этом при снижении температуры или увеличении скорости возрастания нагрузки происходит переход от вязкого к хрупкому разрушению. Эти результаты указывают на потенциальное ускорение сбрасывания льда при увеличении скорости изменения сдвиговых напряжений.

Full Text

Restricted Access

About the authors

К. А. Емельяненко

Институт физической химии и электрохимии им. А. Н. Фрумкина РАН

Author for correspondence.
Email: emelyanenko.kirill@mail.ru
Russian Federation, 119071, Москва, Ленинский просп., 31, корп. 4

А. М. Емельяненко

Институт физической химии и электрохимии им. А. Н. Фрумкина РАН

Email: emelyanenko.kirill@mail.ru
Russian Federation, 119071, Москва, Ленинский просп., 31, корп. 4

Л. Б. Бойнович

Институт физической химии и электрохимии им. А. Н. Фрумкина РАН

Email: emelyanenko.kirill@mail.ru
Russian Federation, 119071, Москва, Ленинский просп., 31, корп. 4

References

  1. Емельяненко К.А., Емельяненко А.М., Бойнович Л.Б. Обзор современного состояния исследований адгезионных явлений на границах твердых тел с твердыми и жидкими водными средами // Коллоид. журн. 2022. Т. 84. № 3. С. 274–300. https://doi.org/10.31857/S002329122203003X
  2. Boinovich L.B., Emelyanenko, A.M. Recent progress in understanding the anti-icing behavior of materials // Adv. Colloid Interface Sci. 2024. V. 323. P. 103057. https://doi.org/10.1016/j.cis.2023.103057
  3. Lambley H., Graeber G., Vogt R., Gaugler L.C., Baumann E., Schutzius T.M., Poulikakos D. Freezing-induced wetting transitions on superhydrophobic surfaces // Nature Physics. 2023. V. 19. P. 649–655. https://doi.org/10.1038/s41567-023-01946-3
  4. Wang Y., Zhang J., Dodiuk H., Kenig S., Ratto J.A., Barry C., Mead J. The reduction in ice adhesion using controlled topography superhydrophobic coatings // J. Coat. Technol. Res. 2023. V. 20. № 2. P. 469–483. https://doi.org/10.1007/s11998-022-00682-2
  5. Kulinich S.A., Farzaneh M. On ice-releasing properties of rough hydrophobic coatings // Cold Reg. Sci. Technol. 2011. V. 65. № 1. P. 60–64. https://doi.org/10.1016/j.coldregions.2010.01.001
  6. Boinovich L.B., Emelyanenko K.A., Emelyanenko A.M. Superhydrophobic versus SLIPS: Temperature dependence and the stability of ice adhesion strength // J. Colloid Interface Sci. 2022. V. 606. P. 556–566. https://doi.org/10.1016/j.jcis.2021.08.030
  7. Yeong Y.H., Wang C., Wynne K.J., Gupta M.C. Oil-infused superhydrophobic silicone material for low ice adhesion with long-term infusion stability // ACS Appl. Mater. Interfaces 2016. V. 8. № 46. P. 32050–32059. https://doi.org/10.1021/acsami.6b11184
  8. Ouyang M., Guo R., Fan Y., Zhou Y., Wu C., Chen L., Huang S., Tian X. Ultralow-adhesion icephobic surfaces: Combining superhydrophobic and liquid-like properties in the same surface // Nano Research. 2023. V. 16. № 1. P. 589–598. https://doi.org/10.1007/s12274-022-4746-z
  9. Work A., Lian Y. A critical review of the measurement of ice adhesion to solid substrates // Prog. Aerosp. Sci. 2018. V. 98. P. 1–26. https://doi.org/10.1016/j.paerosci.2018.03.001
  10. Rønneberg S., Laforte C., Volat C., He J.Y., Zhang Z. The effect of ice type on ice adhesion // AIP Adv. 2019. V. 9. № 5. P. 055304. https://doi.org/10.1063/1.5086242
  11. Rønneberg S., Zhuo Y., Laforte C., He J., Zhang Z. Interlaboratory study of ice adhesion using different techniques // Coatings. 2019. V. 9. № 10. P. 678. https://doi.org/10.3390/coatings9100678
  12. Boinovich L.B., Chulkova E.V., Emelyanenko K.A., Domantovsky A.G., Emelyanenko A.M. The mechanisms of anti-icing properties degradation for slippery liquid-infused porous surfaces under shear stresses // J. Colloid Interface Sci. 2022. V. 609. P. 260–268. https://doi.org/10.1016/j.jcis.2021.11.169
  13. Rønneberg S., He J., Zhang Z. The need for standards in low ice adhesion surface research: A critical review // J. Adhes. Sci. Technol. 2020. V. 34. № 3. P. 319–347. https://doi.org/10.1080/01694243.2019.1679523
  14. Rehfeld N., Brassard J.-D., Yamazaki M., Sakaue H., Balordi M., Koivuluoto H., Mora J., He J., Pervier M.-L., Dolatabadi A., Asenath-Smith E., Järn M., Hou X., Stenzel V. Round-robin study for ice adhesion tests // Aerospace. 2024. V. 11. № 2. P. 106. https://doi.org/10.3390/aerospace11020106
  15. Wang C., Gupta M.C., Yeong Y.H., Wynne K.J. Factors affecting the adhesion of ice to polymer substrates // J. Appl. Polymer Sci. 2018. V. 135. № 24. P. 45734. https://doi.org/10.1002/app.45734
  16. Piscitelli F. Characterization in relevant icing conditions of two superhydrophobic coatings // Appl. Sci. 2022. V. 12. № 8. P. 3705. https://doi.org/10.3390/app12083705
  17. Mora J., García P., Carreño F., Montes L., López-Santos C., Rico V., Borras A., Redondo F., González-Elipe A.R., Agüero A. Could superhydrophobic surfaces be a realistic solution for running-wet areas? // SAE Technical Paper. 2023. № 2023–01–1446. https://doi.org/10.4271/2023–01–1446
  18. Yeong Y.H., Sokhey J., Loth E. Ice Adhesion on Superhydrophobic Coatings in an Icing Wind Tunnel. In: Wohl, C., Berry, D. (eds). Contamination Mitigating Polymeric Coatings for Extreme Environments. Advances in Polymer Science, V. 284. Springer, Cham. 2018. P. 99–121. https://doi.org/10.1007/12_2017_32
  19. Emelyanenko A.M., Boinovich L.B. Application of dynamic thresholding of video images for measuring the interfacial tension of liquids and contact angles // Instrum. Exp. Tech. 2002. V. 45. № 1. P. 44–49. https://doi.org/10.1023/A:1014544124713
  20. Emelyanenko A.M., Boinovich L.B. The role of discretization at the video image processing of sessile and pendant drop profiles // Colloids Surf. A. 2001. V. 189. № 1–3. P. 197–202. https://doi.org/10.1016/S0927–7757(01)00585–4
  21. Кузина Е.А., Омран Ф.Ш., Емельяненко А.М., Бойнович Л.Б. О важности подбора режима гидрофобизации для получения стойких супергидрофобных покрытий // Коллоидн. журн. 2023. Т. 85. № 1. С. 63–70. https://doi.org/10.31857/S0023291222600614
  22. Jin P., Yan X., Hoque M.J., Rabbi K.F., Sett S., Ma J., Li J., Fang X., Carpenter J., Cai S., Tao W., Miljkovic N. Ultra-low ice-substrate adhesion and self-deicing during droplet impact freezing // Cell Rep. Phys. Sci. 2022. V. 3. № 5. P. 100894. https://doi.org/10.1016/j.xcrp.2022.100894
  23. Fang W.Z., Zhu F., Zhu L., Tao W.Q., Yang C. Self-peeling of frozen water droplets upon impacting a cold surface // Commun. Phys. 2022. V. 5. № 1. P. 51. https://doi.org/10.1038/s42005-022-00827-0
  24. Deng K., Feng X., Tan X., Hu Y. Experimental research on compressive mechanical properties of ice under low strain rates // Mater. Today Commun. 2020. V. 24. P. 101029. https://doi.org/10.1016/j.mtcomm.2020.101029
  25. Petrovic J.J. Review mechanical properties of ice and snow // J. Mater. Sci. 2003. V. 38. P. 1–6. https://doi.org/10.1023/A:1021134128038
  26. Song Z., Chen R., Guo D., Yu C. Experimental investigation of dynamic shear mechanical properties and failure criterion of ice at high strain rates // Int. J. Impact Eng. 2022. V. 166. P. 104254. https://doi.org/10.1016/j.ijimpeng.2022.104254
  27. Potekaev A.I., Parvatov G.N., Skripnyak V.V., Skripnyak V.A. Physical and mechanical behavior of ice under dynamic loading // Russ. Phys. J. 2021. V. 64. № 6. P. 1060–1066. https://doi.org/10.1007/s11182-021-02466-4
  28. Spiegel S. Recent advances in applied polymer science // J. Appl. Polymer Sci. 2018. V. 135. № 24. P. 46279. https://doi.org/10.1002/app.46279
  29. Wood M.J., Brock G., Servio P., Kietzig A.M. Leveraging solidification dynamics to design robust ice-shedding surfaces // ACS Appl. Mater. Interfaces. 2022. V. 14. № 33. P. 38379–38387. https://doi.org/10.1021/acsami.2c10656
  30. Boinovich L., Emelyanenko A.M. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface // Langmuir. 2014. V. 30. № 42. P. 12596–12601. https://doi.org/10.1021/la503447f
  31. Щукин Е.Д., Савенко В.И., Малкин А.И. Лекции по физико-химической механике. М.: Nobel Press, 2015. 679 c.
  32. Saletti D., Georges D., Gouy V., Montagnat M., Forquin P. A study of the mechanical response of polycrystalline ice subjected to dynamic tension loading using the spalling test technique // Int. J. Impact Eng. 2019. V. 132. P. 103315. https://doi.org/10.1016/j.ijimpeng.2019.103315
  33. Schulson E.M. Brittle failure of ice // Eng. Fract. Mech. 2001. V. 68. № 17–18. P. 1839–1887. https://doi.org/10.1016/S0013-7944(01)00037-6
  34. Slater B., Michaelides A. Surface premelting of water ice // Nat. Rev. Chem. 2019. V. 3. № 3. P. 172–188. https://doi.org/10.1038/s41570-019-0080-8
  35. Churaev N.V., Sobolev V.D. Disjoining pressure of thin unfreezing water layers between the pore walls and ice in porous bodies // Colloid J. 2002. V. 64. P. 508–511. https://doi.org/10.1023/A:1016884407413
  36. Fiedler J., Boström M., Persson C., Brevik I., Corkery R., Buhmann S.Y., Parsons D.F., Full-spectrum high-resolution modeling of the dielectric function of water // J. Phys. Chem. B. 2020. V. 124. № 15. P. 3103–3113. https://doi.org/10.1021/acs.jpcb.0c00410
  37. Elbaum M., Schick M. Application of the theory of dispersion forces to the surface melting of ice // Phys. Rev. Lett. 1991. V. 66. № 13. P. 1713. https://doi.org/10.1103/PhysRevLett.66.1713
  38. Luengo-Márquez J., Izquierdo-Ruiz F., MacDowell L.G. Intermolecular forces at ice and water interfaces: Premelting, surface freezing, and regelation // J. Chem. Phys. 2022. V. 157. № 4. P. 044704. https://doi.org/10.1063/5.0097378
  39. Boström M., Kuthe S., Carretero-Palacios S., Esteso V., Li Y., Brevik I., Gopidi H.R., Malyi O.I., Glaser B., Persson C. Understanding ice and water film formation on soil particles by combining density functional theory and Casimir–Lifshitz forces // Phys. Rev. B. 2023. V. 108. № 12. P. 125434. https://doi.org/10.1103/PhysRevB.108.125434
  40. Starov V.M., Churaev N.V. Thickness and stability of liquid films on nonplanar surfaces // Colloid J. 1978. V. 40. № 5. P. 757–761.
  41. Boinovich L., Emelyanenko A. The prediction of wettability of curved surfaces on the basis of the isotherms of the disjoining pressure // Colloids Surf. A. 2011. V. 383. № 1–3. P. 10–16. https://doi.org/10.1016/j.colsurfa.2010.12.020
  42. Silin D., Virnovsky G. A variational model of disjoining pressure: Liquid film on a nonplanar surface // Transp. Porous Med. 2010. V. 82. P. 485–505. https://doi.org/10.1007/s11242–009–9424-z
  43. Tian Z., Fan P., Zhu D., Wang L., Zhao H., Chen C., Peng R., Li D., Zhang H., Zhong M. Anti-ice-pinning superhydrophobic surfaces for extremely low ice adhesion // Chem. Eng. J. 2023. V. 473. P. 145382. https://doi.org/10.1016/j.cej.2023.145382
  44. Rebinder P.A., Shchukin E.D. Surface phenomena in solids during the course of their deformation and failure // Sov. Phys. Usp. 1973. V. 15. № 5. P. 555. https://doi.org/10.1070/PU1973v015n05ABEH005006
  45. Boinovich L.B., Emelyanenko A.M. Anti-icing potential of superhydrophobic coatings // Mendeleev Commun. 2013. V. 23. № 1. P. 3–10. https://doi.org/10.1016/j.mencom.2013.01.002
  46. Jellinek H.H., Kachi H., Kittaka S., Lee M., Yokota R. Ice releasing block-copolymer coatings // Colloid Polymer Sci. 1978. V. 256. P. 544–551. https://doi.org/10.1007/BF01639199

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Image of the surface profile of a superhydrophobic sample obtained using a confocal microscope.

Download (152KB)
3. Fig. 2. Ice samples in bushings after separation from smooth hydrophobic (a) and superhydrophobic (b, c) surfaces.

Download (51KB)
4. Fig. 3. Dependences of the measured strength of the adhesive contact of ice to the superhydrophobic surface (a) and the average separation time (i.e., the time from the start of rotation to the moment of destruction of the adhesive contact) for 24 samples (b) on the magnitude of the angular acceleration of the centrifuge.

Download (191KB)
5. Fig. 4. Scheme for discussion of the mechanism of crack formation at the ice-substrate interface. Here QLL denotes the quasi-liquid water layer.

Download (52KB)
6. Fig. 5. Distribution of ice breakaway moments over time under constant shear load at temperatures of –20°C (a) and –5°C (b). A load of 104 kPa corresponds to 60%, and 126 kPa to 72% of the average shear strength of ice breakaway with a continuous increase in load with an angular acceleration of 4.35 rad/sec2 for a temperature of –20°C; 11 and 22 kPa are 33.5 and 67% of the corresponding value for –5°C.

Download (117KB)
7. Application
Download (50KB)

Copyright (c) 2024 Russian Academy of Sciences