Structure formation of non-ionogenic block copolymer pluronic P123 under varying temperatures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The dynamic light scattering method was used to investigate the aqueous solutions of Pluronic P123 under different temperature, solvent, and quercetin additives. Significant changes in the average particle size and polydispersity index were revealed depending on the conditions. The effect of temperature on micelle formation of block copolymer in aqueous solution in the range T=15–45°C, the most commonly considered in the use of P123 in sol-gel synthesis of silica, was studied. The formation of micelles of the studied surfactant was greatly influenced by temperature, especially at T=15–20°C. In this temperature range, the size distribution of the scattering intensity has a polymodal character, which indicates the presence of macromolecules, micelles and their aggregates in the system. Further increase in temperature up to 45°C does not result in a significant change in particle size. In aqueous solutions, micelles with a narrow size distribution (minimum polydispersity index) are formed in the temperature ranges 21–25 and 35–40°C. Significant influence of alkanols and polyphenolic substances additives as solubilizers and able to influence the structure of micelles both in their volume and on the surface of polar parts of surfactants was noted. It is shown that in the presence of butanol-1 the stabilization of micelles at temperatures 15–20°C is observed. At T>30°C rearrangements of the mesophase structure occur. As the proportion of butanol-1 in the solution increases, its influence is manifested at lower temperatures. It was noted that ethanol has a destructive effect on micelles. Quercetin additives exhibit the opposite micelle stabilizing effect, leading to the formation of a homogeneous surfactant structure. It is shown that by varying the solvent composition, it is possible to control the binding of flavonoid to micelle by changing the solvation. The greatest influence of quercetin on the structure formation of P123 was observed at the solvent composition corresponding to the molar ratio of ethanol and block copolymer n(EtOH):n(P123)=80:1.

Full Text

Restricted Access

About the authors

A. S. Zavalyueva

Воронежский государственный университет

Author for correspondence.
Email: a-kh-01@yandex.ru
Russian Federation, Университетская пл., 1, Воронеж, 394018

S. I. Karpov

Воронежский государственный университет

Email: a-kh-01@yandex.ru
Russian Federation, Университетская пл., 1, Воронеж, 394018

A. N. Dubovitskaya

Воронежский государственный университет

Email: a-kh-01@yandex.ru
Russian Federation, Университетская пл., 1, Воронеж, 394018

M. G. Holyavka

Воронежский государственный университет

Email: a-kh-01@yandex.ru
Russian Federation, Университетская пл., 1, Воронеж, 394018

V. F. Selemenev

Воронежский государственный университет

Email: a-kh-01@yandex.ru
Russian Federation, Университетская пл., 1, Воронеж, 394018

References

  1. Patidar P., Bahadur A. Modulating effect of different biomolecules and other additives on cloud point and aggregation of amphiphilic linear and starblock copolymer // Journal of Molecular Liquids. 2018. V. 249. P. 219–226. https://doi.org/10.1016/j.molliq.2017.11.019
  2. Patidar P., Pillai S.A., Bahadur P., Bahadur A. Tuning the self-assembly of EO-PO block copolymers and quercetin solubilization in the presence of some common pharmacuetical excipients: A comparative study on a linear triblock and a starblock copolymer // Journal of Molecular Liquids. 2017. V. 241. P. 511–519. https://doi.org/10.1016/j.molliq.2017.06.035
  3. Wei D., Ge L., Guo R. Microstructure transition of hydrophilic modified ibuprofen and Pluronic copolymer F127 complexes // Colloid and Polymer Science. 2013. V. 291. P. 1255–1265. https://doi.org/10.1007/s00396-012-2859-8
  4. Basak R., Bandyopadhyay R. Encapsulation of hydrophobic drugs in Pluronic F127 micelles: Effects of drug hydrophobicity, solution temperature, and pH // Langmuir. 2013. V. 29. № 13. P. 4350–4356. https://doi.org/10.1021/la304836e
  5. Zhao D., Feng J., Huo Q. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores // Science. 1998. V. 279. № 5350. P. 548–552. https://doi.org/10.1126/science.279.5350.548
  6. Kim T. W., Kleitz F., Paul B., Ryoo R. MCM-48-like large mesoporous silicas with tailored pore structure: Facile synthesis domain in a ternary triblock copolymer-butanol-water system // Journal of the American Chemical Society. 2005. V. 127. № 20. P. 7601–7610. https://doi.org/10.1021/ja042601m
  7. Roik N.V., Belyakova L.A., Dziazko M.O., Oranska O.I. Influence of azo dye additives on structural ordering of mesoporous silicas // Applied Nanoscience. 2020. V. 10. № 8. P. 2547–2556. https://doi.org/10.1007/s13204-019-01013-5
  8. Дементьева О.В., Наумова К.А., Шишмакова Е.М. и др. Синтез бифункциональных частиц-контейнеров из кремнезема на мицеллах антисептика с солюбилизированным куркумином и оценка их биологической активности // Коллоид. журн. 2021. Т. 83. № 6. С. 623–633. https://doi.org/10.31857/s0023291221060021
  9. Beck J.S., Vartuli J.C., Roth W.J. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates // Journal of the American Chemical Society. 1992. V. 114. № 27. P. 10834–10843. https://doi.org/10.1021/JA00053A020
  10. Wanka G., Hoffmann H., Ulbricht W. Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions // Macromolecules. 1994. V. 27. № 15. P. 4145–4159. https://doi.org/10.1021/ma00093a016
  11. Letaief N., Lucas-Girot A., Oudadesse H. et al. Effect of aging temperature on the structure, pore morphology and bioactivity of new sol-gel synthesized bioglass // Journal of Non-Crystalline Solids. 2014. V. 402. P. 194–199. https://doi.org/10.1016/j.jnoncrysol.2014.06.005
  12. Хлуднева А.С., Карпов С.И., Ресснер Ф., Селеменев В.Ф. Структура и сорбционные свойства мезопористых кремнеземов, синтезированных при варьировании температуры и кремниевой основы // Сорбционные и хроматографические процессы. 2021. Т. 21. № 5. С. 669–680. https://doi.org/10.17308/sorpchrom.2021.21/3773
  13. Dan H., Chen L., Xian Q. et al. Tailored synthesis of SBA-15 rods using different types of acids and its application in adsorption of uranium // Separation and Purification Technology. 2019. V. 210. P. 491–496. https://doi.org/10.1016/j.seppur.2018.08.039
  14. Costa F.O., Misael C.G.A., Silva A.M., Sousa B.V. Textural analysis of SBA-15 molecular sieve using ethanol as co-solvent // Adsorption. 2015. V. 21. P. 671–676. https://doi.org/10.1007/s10450-015-9717-1
  15. Semeykina V., Zharov I. Medium controlled aggregative growth as a key step in mesoporous silica nanoparticle formation // Journal of Colloid and Interface Science. 2022. V. 615. P. 236–247. https://doi.org/10.1016/j.jcis.2022.01.166
  16. Oliveira M.R., Deon M., Benvenutti E.V. et al. Effect of microwave irradiation on the structural, chemical, and hydrophilicity characteristics of ordered mesoporous silica SBA-15 // Journal of Sol-Gel Science and Technology. 2020. V. 94. P. 708–718. https://doi.org/10.1007/s10971-020-05219-w
  17. Li Y., Tian Y., Jia X. et al. Effect of pharmaceutical excipients on micellization of Pluronic and the application as drug carrier to reverse MDR // Journal of Molecular Liquids. 2023. V. 383. P. 122182. https://doi.org/10.1016/j.molliq.2023.122182
  18. Khimani M., Rao U., Bahadur P., Bahadur P. Calorimetric and scattering studies on micellization of Pluronics in aqueous solutions: Effect of the size of hydrophilic PEO end blocks, temperature, and added salt // Journal of Dispersion Science and Technology. 2014. V. 35. № 11. P. 1599–1610. https://doi.org/10.1080/01932691.2013.858349
  19. Parmar A., Singh K., Bahadur A. et al. Interaction and solubilization of some phenolic antioxidants in Pluronic® micelles // Colloids and Surfaces B: Biointerfaces. 2011. V. 86. № 2. P. 319–326. https://doi.org/10.1016/j.colsurfb.2011.04.015
  20. Chaghi R., Ménorval L.C.de, Charnay C., Zajac J. Competitive interactions between components in surfactant-cosurfactant-additive systems // Journal of Colloid and Interface Science. 2010. V. 344. № 2. P. 402–409. https://doi.org/10.1016/j.jcis.2009.12.064
  21. Ерин К.В. Об изменении распределения частиц и агрегатов по размерам при разбавлении магнитных жидкостей // Коллоид. журн. 2017. Т. 79. № 1. С. 32–37. https://doi.org/10.7868/s0023291217010037
  22. Молодкина Л.М., Голикова Е.В., Бареева Р.С. и др. Кинетика агрегации гидрозоля ОХ50 в растворах NаCl, исследованная методом динамического светорассеяния // Коллоид. журн. 2016. Т. 78. № 5. С. 578–587. https://doi.org/10.7868/s0023291216050104
  23. Branca C., D’Angelo G. Aggregation behavior of Pluronic F127 solutions in presence of chitosan/clay nanocomposites examined by dynamic light scattering // Journal of Colloid and Interface Science. 2019. V. 542. P. 289–295. https://doi.org/10.1016/j.jcis.2019.02.031
  24. Luo H., Jiang K., Liang X. et al. Insights into morphological transition of Pluronic P123 micelles as a function of gallate // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019. V. 572. P. 221–229. https://doi.org/10.1016/j.colsurfa.2019.04.005
  25. Dey J., Kumar S., Nath S. et al. Additive induced core and corona specific dehydration and ensuing growth and interaction of Pluronic F127 micelles // Journal of Colloid and Interface Science. 2014. V. 415. P. 95–102. https://doi.org/10.1016/j.jcis.2013.10.019
  26. Nguyen-Kim V.., Prévost S., Seidel K. et al. Solubilization of active ingredients of different polarity in Pluronic® micellar solutions – Correlations between solubilizate polarity and solubilization site // Journal of Colloid and Interface Science. 2016. V. 477. P. 94–102. https://doi.org/10.1016/j.jcis.2016.05.017
  27. Parekh P., Dey J., Kumar S. et al. Butanol solubilization in aqueous F127 solution: Investigating the enhanced micellar solvation and consequent improvement in gelation characteristics // Colloids and Surfaces B: Biointerfaces. 2014. V. 114. P. 386–391. https://doi.org/10.1016/j.colsurfb.2013.10.030
  28. Maheswari U., Sridevi Sangeetha K.S., Umamaheswari S. et al. Flavonoids: Therapeutic potential of natural pharmacological agents // International journal of pharmaceutical sciences and research. 2016. V. 7. № 10. P. 3924–3930. https://doi.org/10.13040/IJPSR.0975-8232.7(10).3924-30
  29. Taraba A., Szymczyk K., Tyszczuk-Rotko K. Surfactant-rutin-alcohol interactions: A multi-techniques analysis // Journal of Molecular Liquids. 2021. V. 328. P. 115447. https://doi.org/10.1016/j.molliq.2021.115447
  30. Tiwari S., Ma J., Rathod S., Bahadur P. Solubilization of quercetin in P123 micelles: Scattering and NMR studies // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 621. P. 126555. https://doi.org/10.1016/j.colsurfa.2021.126555
  31. Roik N.V., Belyakova L.A., Dziazko M.O. Solubilization of azo dyes by cetyltrimethylammonium bromide micelles as structure control factor at synthesis of ordered mesoporous silicas // Journal of Molecular Liquids. 2021. V. 328. P. 115451. https://doi.org/10.1016/j.molliq.2021.115451
  32. Наумова К.А., Дементьева О.В., Зайцева А.В., Рудой В.М. Солюбилизация как способ создания гибридных мицеллярных темплатов для синтеза многофункциональных мезопористых частиц-контейнеров // Коллоид. журн. 2019. Т. 81. № 4. С. 478–486. https://doi.org/10.1134/s0023291219040098
  33. H.J., Ryu C.Y. Scalable PEO-PPO-PEO triblock copolymer purification from Pluronics through competitive adsorption // Polymer. 2012. V. 53. № 22. P. 5052–5059. http://doi.org/10.1016/j.polymer.2012.09.009
  34. Ganguly R., Kumar S., Soumya M. et al. Structural and therapeutic properties of salicylic acid-solubilized Pluronic solutions and hydrogels // Soft Matter. Royal Society of Chemistry. 2024. V. 20. № 9. P. 2075–2086. https://doi.org/10.1039/d4sm00079j
  35. Filippov S.K., Khusnutdinov R., Murmiliuk A. et al. Dynamic light scattering and transmission electron microscopy in drug delivery: A roadmap for correct characterization of nanoparticles and interpretation of results // Materials Horizons. Royal Society of Chemistry. 2023. V. 10. № 12. P. 5354–5370. https://doi.org/10.1039/d3mh00717k
  36. Jian T., Anastasiadis S.H., Semenov A.N. et al. Dynamics of composition fluctuations in diblock copolymer solutions far from and near to the ordering transition // Macromolecules. 1994. V. 27. № 17. P. 4762–4773. https://doi.org/10.1021/ma00095a017
  37. Stepanek P., Lodge T.P. Dynamic Light Scattering from Block Copolymer Melts near the Order-Disorder Transition. 1996. V. 29. № 4. P. 1244–1251. https://doi.org/10.1021/ma9509772
  38. Ricardo N.M.P.S., Ricardo N.M.P.S., Costa F. de M.L.L. et al. The effect of n-, s- and t-butanol on the micellization and gelation of Pluronic P123 in aqueous solution // Journal of Colloid and Interface Science. 2011. V. 353. № 2. P. 482–489. https://doi.org/10.1016/j.jcis.2010.09.061
  39. Dahanayake R., Dormidontova E.E. Molecular structure and co-solvent distribution in PPO-PEO and Pluronic micelles // Macromolecules. 2022. V. 55. № 23. P. 10439–10449. https://doi.org/10.1021/acs.macromol.2c01206
  40. Hsu Y.H., Tsui H.W., Lee C.F. et al. Effect of alcohols on the heat of micellization of Pluronic F88 aqueous solutions // Colloid and Polymer Science. 2015. V. 293. P. 3403–3415. https://doi.org/10.1007/s00396-015-3662-0
  41. Volkova T., Simonova O., Perlovich G. Revisiting the solubility–permeability relationship with hydrophobic drug umifenovir in Pluronic solutions: Impact of pH and co-solvent // Pharmaceutics. 2023. V. 15. № 2. P. 422. https://doi.org/10.3390/pharmaceutics15020422
  42. Thapa R.K., Cazzador F., Grønlien K.G., Tønnesen H.H. Effect of curcumin and cosolvents on the micellization of Pluronic F127 in aqueous solution // Colloids and Surfaces B: Biointerfaces. 2020. V. 195. P. 111250. https://doi.org/10.1016/j.colsurfb.2020.111250
  43. Chaghi R., Ménorval L.C., Charnay C., Zajac J. Competitive interactions between components in surfactant-cosurfactant-additive systems // Journal of Colloid and Interface Science. 2010. V. 344. № 2. P. 402–409. https://doi.org/10.1016/j.jcis.2009.12.064
  44. Taraba A., Szymczyk K. Spectroscopic studies of the quercetin/rutin-nonionic surfactant interactions // Journal of Molecular Liquids. 2022. V. 360. P. 119483 https://doi.org/10.1016/j.molliq.2022.119483

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Size distribution in a P123 solution with varying temperature (1 – 15°C, 2 – 17°C, 3 – 20°C, 4 – 21°C, 5 – 25°C, 6 – 30°C, 7 – 35°C, 8 – 40°C, 9 – 45°C): a) by scattering intensity; b) by number of particles; c) by volume.

Download (41KB)
3. Fig. 2. Dependence of the average hydrodynamic diameter on temperature with varying ratio n(BuOH) : n(P123) : 1 – 0; 2 – 40 : 1; 3 – 60 : 1; 4 – 80 : 1; 5 – 160 : 1.

Download (13KB)
4. Fig. 3. Particle size distribution of Pluronic P123: 1, 2 – in aqueous solution, 3, 4 – in the presence of butanol-1 (n(BuOH) : n(P123)=80 : 1): a) by scattering intensity; b) by number of particles; c) by volume. T = 30°C (1, 3) and 40°C (2, 4).

Download (27KB)
5. Fig. 4. Particle size distribution of Pluronic P123 with varying composition of water-ethanol solvent: 1 – without ethanol additives; 2 – n(EtOH) : n(P123) = 80 : 1; 3 – n(EtOH) : n(P123) = 160 : 1; 4 – n(EtOH) : n(P123) = 370 : 1; a, d) by scattering intensity; b, d) by number of particles; c, e) by volume. T = 20°C (a–c) and 40°C (d–f).

Download (52KB)
6. Fig. 5. Particle size distribution of Pluronic P123 with varying ratio n(Quer) : n(P123): 1 – 0; 2 – 0.024; 3 – 0.072; 4 – 0.144: a) by scattering intensity; b) by number of particles; c) by volume. T = 20°C, n(EtOH) : n(P123) = 160 : 1.

Download (28KB)
7. Fig. 6. Dependence of the average hydrodynamic diameter (a) and polydispersity index (b) on the molar ratio n(Quer) : n(P123) with varying composition of the water-ethanol solvent: 1 – n(EtOH) : n(P123) = 80 : 1; 2 – n(EtOH) : n(P123) = 160 : 1; 3 – n(EtOH) : n(P123) = 250 : 1; 4 – n(EtOH) : n(P123) = 370 : 1. Measurement temperature 40°C.

Download (30KB)

Copyright (c) 2024 Russian Academy of Sciences