The aerosol layer of the lower thermosphere: III. Observation in absence of the Moon and under large Sun’s zenith angles

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The results of the “Terminator” space experiment on board the International Space Station are given. Observations have been realized under limb geometry in the visual and near infrared ranges of the spectrum in absence of the Moon and under large Sun’s zenith angles (>145°). The treatment of the obtained digital photos has shown that our previous conception of the scattering mechanism of the observed emission layer to be faulty in absence of sun’s backlight. In the present paper the emission of the observed layer is considered as thermal radiation of meteoric particles, preheated to 2000–3000 K on entering the atmosphere.

全文:

受限制的访问

作者简介

A. Belyaev

Fedorov Institute of Applied Geophysics (IPG)

编辑信件的主要联系方式.
Email: anb52@mail.ru
俄罗斯联邦, Moscow

S. Nikolaishvili

Fedorov Institute of Applied Geophysics (IPG)

Email: ser58ge@mail.ru
俄罗斯联邦, Moscow

A. Omel’chenko

Fedorov Institute of Applied Geophysics (IPG)

Email: alexom@mail.ru
俄罗斯联邦, Moscow

A. Repin

Fedorov Institute of Applied Geophysics (IPG)

Email: repin_a_yu@mail.ru
俄罗斯联邦, Moscow

M. Poluarshinov

S.P. Korolev Rocket and Space Corporation Energia (RKK Energia)

Email: mikhail.poluarshinov@rsce.ru
俄罗斯联邦, Korolev

Yu. Smirnov

S.P. Korolev Rocket and Space Corporation Energia (RKK Energia)

Email: yury.v.smirnov@rsce.ru
俄罗斯联邦, Korolev

A. Strakhov

Scientific Production Enterprise Robis (NPP Robis)

Email: lexand@robis.ru
俄罗斯联邦, Moscow

A. Batishchev

National Research Nuclear University Moscow Engineering Physical Institute (MEPhI)

Email: alexey-batschev@mail.ru
俄罗斯联邦, Moscow

V. Stasevich

Scientific Production Enterprise Robis (NPP Robis)

Email: walter@robis.ru
俄罗斯联邦, Moscow

Yu. Platov

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN)

Email: yplatov@mail.ru
俄罗斯联邦, Moscow, Troitsk

参考

  1. Беляев А.Н., Николайшвили С.Ш., Омельченко А.Н., Репин А.Ю., Полуаршинов М.А., Смирнов Ю.В., Страхов А.В., Батищев А.Г., Стасевич В.И., Платов Ю.В. Аэрозольный слой нижней термосферы: I. Наблюдение на фоне лимба Земли // Геомагнетизм и аэрономия. Т. 63. № 4. С. 455–466. 2023. https://doi.org/10.31857/S0016794023600400
  2. Беляев А.Н., Николайшвили С.Ш., Омельченко А.Н., Репин А.Ю., Полуаршинов М.А., Смирнов Ю.В., Страхов А.В., Батищев А.Г., Стасевич В.И., Платов Ю.В. Аэрозольный слой нижней термосферы: II. Наблюдение при полной Луне // Геомагнетизм и аэрономия. Т. 64. № 5. С. 688–700. 2024. https://doi.org/10.31857/S0016794024050097
  3. Гурвич А.С., Воробьёв В.В., Савченко С.А., Пахомов А.И., Падалка Г.И., Шефов Н.Н., Семёнов А.И. Ночное свечение верхней атмосферы в диапазоне 420–530 нм по измерениям на орбитальной станции “Мир” // Геомагнетизм и аэрономия. Т. 42. № 4. С. 541–546. 2002.
  4. Семёнов А.И., Шефов Н.Н., Медведева И.В. Эмпирическая модель вариаций эмиссии континуума в верхней атмосфере. 1. Интенсивность // Геомагнетизм и аэрономия. Т. 54. № 4. С. 528–539. 2014а. https://doi.org/10.7868/S0016794014040154
  5. Семёнов А.И., Шефов Н.Н., Медведева И.В. Эмпирическая модель вариаций эмиссии континуума в верхней атмосфере. 2. Инфракрасные компоненты // Геомагнетизм и аэрономия. Т. 54. № 5. С. 701–712. 2014б. https://doi.org/10.7868/S0016794014050162
  6. Шефов Н.Н., Семёнов А.И., Хомич В.Ю. Излучение верхней атмосферы – индикатор ее структуры и динамики. М.: ГЕОС, 740 с. 2006.
  7. Carrillo-Sanchez J.D., Plane J.M.C., Feng W., Nesvorny D., Janches D. On the size and velocity distribution of cosmic dust particles entering the atmosphere // Geophys. Res. Lett. V. 42. № 15. P. 6518–6525. 2015. https://doi.org/10.1002/2015GL065149
  8. McDade I.C., Llewellyn E.J., Greer R.G.H., Murtagh D.P. ETON 3: Altitude profile of the nightglow continuum at green and near infrared wavelengths // Planet. Space Sci. V. 34. № 9. P. 801–810. 1986. https://doi.org/10.1016/0032-0633(86)90076-0
  9. Noll S., Kausch W., Barden M., Jones A.M., Szyszka C., Kimeswenger S., Vinther J. An atmospheric radiation model for Cerro Paranal. I. The optical spectral range // Astron. Astrophys. V. 543. ID A92. 2012. https://doi.org/10.1051/0004-6361/201219040
  10. Noll S., Plane J.M.C., Feng W., Kalogerakis K.S., Kausch W., Schmidt C., Bittner M., Kimeswenger S. Structure, variability, and origin of the low-latitude nightglow continuum between 300 and 1800 nm: evidence for HO2 emission in the near-infrared // Atmos. Chem. Phys. V. 24. № 2. P. 1143–1176. 2024. https://doi.org/10.5194/acp-24-1143-2024
  11. Plane J.M. Cosmic dust in the Earth’s atmosphere // Chem. Soc. Rev. V. 41. № 19. P. 6507–6518. 2012. https://doi.org/10.1039/C2CS35121H

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Positions of the ISS and the photographed region of the atmosphere at the moments of shooting: 09:32:27 UTC (1), 11:05:17 UTC (2), 12:38:07 UTC (3), 14:10:57 UTC (4), 15:43:47 UTC (5), 17:16:37 UTC (6).

下载 (737KB)
3. Fig. 2. Photographs of the luminous SAS in three ranges (upper – 540 ± 5 nm, middle – 700 ± 5 nm, lower – 830 ± 5 nm).

下载 (2MB)
4. Fig. 3. Altitude profile of the brightness of the luminous SAS at a wavelength of 700 nm.

下载 (887KB)
5. Fig. 4. Vertical brightness profiles of the luminous SAS. Dashed line – 540 ± 5 nm, thin continuous – 830 ± 5 nm, thick continuous – 700 ± 5 nm. The numbering of the graphs corresponds to the numbering in Fig. 1.

下载 (2MB)
6. Fig. 5. Vertical brightness profiles of the luminous SAS, corrected for the spectral sensitivity of the matrix. Dashed line – 540 ± 5 nm, thin continuous – 830 ± 5 nm, thick continuous – 700 ± 5 nm. The numbering of the graphs corresponds to the numbering in Fig. 1.

下载 (1MB)
7. Fig. 6. Vertical profiles of the volumetric luminosity of the SAS. Dashed line – 540 ± 5 nm, thin continuous – 830 ± 5 nm, thick continuous – 700 ± 5 nm. The numbering of the graphs corresponds to the numbering in Fig. 1.

下载 (2MB)

版权所有 © Russian Academy of Sciences, 2025