Relationships Between Solar Activity Indices in Different Time Intervals
- Autores: Deminov M.G.1
-
Afiliações:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
- Edição: Volume 65, Nº 3 (2025)
- Páginas: 335-342
- Seção: Articles
- URL: https://cijournal.ru/0016-7940/article/view/686968
- DOI: https://doi.org/10.31857/S0016794025030041
- EDN: https://elibrary.ru/ESCRAE
- ID: 686968
Citar
Resumo
The article presents the results of the analysis of long-term changes in the relationship between solar activity indices for 1953−2023. For this purpose, the annual moving averages of the F10, F30, MgII, Ri and T indices were used – the solar radio emission fluxes at wavelengths of 10.7 and 30 cm, the ratio of the central part to the flanks in the magnesium emission band of 276–284 nm, the international sunspot number and the ionospheric index, which is determined from ionospheric data as an analogue of the sunspot number. It has been found that the entire measurement period can be divided into the intervals 1953−1980, 1981−2012 and 2013−2023, in which the relationships between the solar activity indices differ distinctly. In the interval 1953−1980, these relationships are stable, i.e. there is practically no linear time trend in the dependence of one solar activity index on another. In the interval 2013−2023, such trends are usually significant. The boundaries of these intervals (1980 and 2013) approximately correspond to the maxima of the first and last solar cycles in the decreasing activity regime, when the large-scale solar magnetic field and the solar cycle height decrease over time. Therefore, the relationships between the solar activity indices, including the relationships between the ionospheric index and solar indices provide additional information on changes in the solar cycle regimes and can serve as one of the characteristics of changes in these regimes.
Palavras-chave
Texto integral

Sobre autores
M. Deminov
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: deminov@izmiran.ru
Rússia, Troitsk
Bibliografia
- Обридко В.Н. Магнитные поля и индексы активности / Пламенная гелиогеофизика, 2 т. / Ред. Л.М. Зеленый и И.С. Веселовский. М.: Физматлит. T. 1. С. 41−60. 2008.
- Обридко В.Н., Шельтинг Б.Д. Некоторые аномалии эволюции глобальных и крупномасштабных магнитных полей на Солнце как предвестники нескольких предстоящих невысоких циклов // Письма в Астрономический журнал. Т. 35. № 4. С. 279–285. 2009.
- Balogh A., Hudson H.S., Petrovay K., von Steiger R. Introduction to the solar activity cycle: Overview of causes and consequences // Space Sci. Rev. V. 186. № 1–4. P. 1–15. 2014. https://doi.org/ 10.1007/s11214-014-0125-8
- Caruana J. The IPS monthly T index / Proc. Solar-Terrestrial Prediction Workshop. Leura, Australia. October 16–20, 1989. V. 2. Ed. R.J. Thompson. Boulder, CO: Environmental Research Lab. P. 257–263. 1990.
- Danilov A.D., Berbeneva N.A. Statistical analysis of the critical frequency foF2 dependence on various solar activity indices // Adv. Space Res. V. 72. № 6. P. 2351–2361. 2023. https://doi.org/10.1016/j.asr.2023.05.012
- Danilov A.D., Konstantinova A.V. Trends in foF2 to 2022 and various solar activity indices // Adv. Space Res. V. 71. № 11. P. 4594–4603. 2023. https://doi.org/10.1016/j.asr.2023.01.028
- Harvey K.L. The cyclic behavior of solar activity / The Solar Cycle. Proc. National Solar Observatory / Sacramento Peak 12th Summer Workshop / Astr. Soc. P. V. 27. Ed. K.L. Harvey. San Francisco: ASP. P. 335–367. 1992.
- Hathaway D.H. The solar cycle // Living Rev. Sol. Phys. V. 12. ID 4. 2015. https://doi.org/10.1007/lrsp-2015-4
- Laštovička J., Burešova D. Relationships between foF2 and various solar activity proxies // Space Weather. V. 21. № 4. ID e2022SW003359. 2023. https://doi.org/10.1029/2022SW003359
- Laštovička J. Dependence of long-term trends in foF2 at middle latitudes on different solar activity proxies // Adv. Space Res. V. 73. № 1. P. 685–689. 2024. https://doi.org/10.1016/j.asr.2023.09.047
- Livingston W., Penn M.J., Svalgaard L. Decreasing sunspot magnetic fields explain unique 10.7 cm radio flux // Astrophys. J. Lett. V. 757. № 1. ID L8. 2012. https://doi.org/10.1088/2041-8205/757/1/L8
- Martin S.F. Observations key to understanding solar cycles: a review // Front. Astron. Space Sci. V. 10. ID 1177097. 2024. https://doi.org/10.3389/fspas.2023.1177097
- Mursula K., Pevtsov A.A., Asikainen T., Tahtinen I., Yeates A.R. Transition to a weaker Sun: Changes in the solar atmosphere during the decay of the Modern Maximum // Astron. Astrophys. V. 685. ID A170. 2024. https://doi.org/10.1051/0004-6361/202449231
- Petrie G.J.D. Global solar photospheric and coronal magnetic field over activity cycles 21–25 // J. Space Weather Space. V. 14. ID 5. 2024. https://doi.org/10.1051/swsc/2024005
- Rees M.H. Physics and chemistry of the upper atmosphere. New York: Cambridge Univ. Press, 289 p. 1989.
- Svalgaard L., Hansen W.W. Solar activity – past, present, future // J. Space Weather Space. V. 3. ID A24. 2013. https://doi.org/10.1051/swsc/2013046
Arquivos suplementares
