Concepts of horizontal gene transfer at the turn of the 20th and 21st centuries

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Horizontal gene transfer (HGT) is a fundamental process in the evolution of prokaryotic and, potentially, eukaryotic organisms. It facilitates the exchange of genetic material across diverse species and groups, bypassing traditional inheritance pathways. Research conducted at the turn of the 20th and 21st centuries has demonstrated that HGT not only drives the diversification and adaptation of prokaryotes but also plays a significant role in the evolution of complex eukaryotic life forms. This mini-review explores the various mechanisms of HGT, including transformation, transduction, and conjugation in prokaryotes, as well as specific instances of HGT in eukaryotes. It also discusses modern methods for detecting HGT, such as molecular approaches based on genome sequencing and the analysis of evolutionary history. The review highlights the structure of HGT networks and the role of microbial hubs in facilitating gene transfer. Additionally, it addresses potential applications of HGT in biotechnology and raises important questions regarding its potential risks to human health. This work emphasizes the need for further research into HGT mechanisms and their impact on genome evolution, including the opportunities and constraints they impose on the adaptation of organisms to environmental changes.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Shchit

State Research Center for Applied Microbiology and Biotechnology

Email: kuznet61@gmail.com
Ресей, Moscow oblast, Obolensk, 142279

A. Kuznetsov

Kovalevsky Institute of Biology of the Southern Seas Russian Academy of Sciences; Sevastopol State University

Хат алмасуға жауапты Автор.
Email: kuznet61@gmail.com
Ресей, Sevastopol, 299011; Sevastopol, 299053

Әдебиет тізімі

  1. Прозоров А.А. Генетическая трансформация и трансфекция. М.: Наука, 1980. 248 с.
  2. Грант В. Эволюционный процесс. Критический обзор эволюционной теории. М.: Мир, 1991. 488 с.
  3. Хесин Р.Б. Непостоянство генома. М.: Наука, 1985. 472 с.
  4. Koonin E.V., Dolja V.V., Krupovic M., Kuhn J.H. Viruses defined by the position of the virosphere within the replicator space // Microbiol. Mol. Biol. Rev. 2021. V. 85. № 4. https://doi.org/10.1128/MMBR.00193-20
  5. Koonin E.V., Martin W. On the origin of genomes and cells within inorganic compartments // Trends Genet. 2005. V. 21. № 12. P. 647–654. https://doi.org/10.1016/j.tig.2005.09.006
  6. Forterre P. The origin of viruses and their possible roles in major evolutionary transitions // Virus Res. 2006. V. 117. № 1. P. 5–16. https://doi.org/10.1016/j.virusres.2006.01.010
  7. Koonin E.V. On the origin of cells and viruses: primordial virus world scenario // Ann. N.Y. Acad. Sci. 2009. V. 1178. № 1. P. 47–64. https://doi.org/10.1073/pnas.1600338113
  8. Koonin E.V. Carl Woese's vision of cellular evolution and the domains of life // RNA Biol. 2014. V. 11. № 3. P. 197–204. https://doi.org/10.4161/rna.27673
  9. Krupovic M., Dolja V.V., Koonin E.V. The LUCA and its complex virome // Nat. Rev. Microbiol. 2020. V. 18. № 11. P. 661–670. https://doi.org/10.1038/s41579-020-0408-x
  10. Ravenhall M., Škunca N., Lassalle F., Dessimoz C. Inferring horizontal gene transfer // PLoS Comput. Biol. 2015. V. 11. № 5. https://doi.org/10.1371/journal.pcbi.1004095
  11. Nagies F.S.P., Brueckner J., Tria F.D.K., Martin W.F. A spectrum of verticality across genes // PLoS Genet. 2020. V. 16. № 11. https://doi.org/10.1371/journal.pgen.1009200
  12. Kunin V., Ouzounis C.A. The balance of driving forces during genome evolution in prokaryotes // Genome Res. 2003. V. 13. № 7. P. 1589–1594. https://doi.org/10.1101/gr.1092603
  13. Shapiro B.J., Leducq J.B., Mallet J. What is speciation? // PLoS Genet. 2016. V. 12. № 3. https://doi.org/10.1371/journal.pgen.1005860
  14. Zaneveld J.R., Nemergut D.R., Knight R. Are all horizontal gene transfers created equal? Prospects for mechanism-based studies of HGT patterns // Microbiology (Reading). 2008. V. 154. Pt. 1. P. 1–15. https://doi.org/10.1099/mic.0.2007/011833-0
  15. Hirt R.P., Alsmark C., Embley T.M. Lateral gene transfers and the origins of the eukaryote proteome: a view from microbial parasites // Curr. Opin. Microbiol. 2015. V. 23. P. 155–162. https://doi.org/10.1016/j.mib.2014.11.018
  16. Soucy S.M., Huang J., Gogarten J.P. Horizontal gene transfer: Building the web of life // Nat. Rev. Genet. 2015. V. 16. № 8. P. 472–482. https://doi.org/10.1038/nrg3962
  17. Dunning Hotopp J.C., Clark M.E., Oliveira D.C. et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes // Science. 2007. V. 317. № 5845. P. 1753–1756. https://doi.org/10.1126/science.1142490
  18. Warren W.C., Hillier L.W., Marshall Graves J.A. et al. Genome analysis of the platypus reveals unique signatures of evolution // Nature. 2008. V. 453. № 7192. P. 175–183. https://doi.org/10.1038/nature06936
  19. Gillings M.R. Lateral gene transfer, bacterial genome evolution, and the Anthropocene // Ann. N.Y. Acad. Sci. 2017. V. 1389. № 1. P. 20–36. https://doi.org/10.1111/nyas.13213
  20. Dmitrijeva M., Tackmann J., Matias Rodrigues J.F. et al. A global survey of prokaryotic genomes reveals the eco-evolutionary pressures driving horizontal gene transfer // Nat. Ecol. Evol. 2024. V. 8. P. 986–998. https://doi.org/10.1038/s41559-024-02357-0
  21. Ochman H., Lerat E., Daubin V. Examining bacterial species under the specter of gene transfer and exchange // Proc. Natl Acad. Sci. USA. 2005. V. 102. Suppl. 1. P. 6595–6599. https://doi.org/10.1073/pnas.0502035102
  22. Wiedenbeck J., Cohan F.M. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches // FEMS Microbiol. Rev. 2011. V. 35. № 5. P. 957–976. https://doi.org/ 10.1111/j.1574-6976.2011.00292.x
  23. Toussaint A., Chandler M. Prokaryote genome fluidity: Toward a system approach of the mobilome // Methods Mol. Biol. 2012. V. 804. P. 57–80. https://doi.org/10.1007/978-1-61779-361-5_4
  24. Kunin V., Goldovsky L., Darzentas N., Ouzounis C.A. The net of life: Reconstructing the microbial phylogenetic network // Genome Res. 2005. V. 15. № 7. P. 954–959. https://doi.org/10.1101/gr.3666505
  25. Faguy D.M. Lateral gene transfer (LGT) between Archaea and Escherichia coli is a contributor to the emergence of novel infectious disease // BMC Infect. Dis. 2003. V. 3. P. 13. https://doi.org/10.1186/1471-2334-3-13
  26. Rest J.S., Mindell D.P. Retroids in Archaea: Рhylogeny and lateral origins // Mol. Biol. Evol. 2003. V. 20. № 7. P. 1134–1142. https://doi.org/10.1093/molbev/msg135
  27. Leu A.O., McIlroy S.J., Ye J. et al. Lateral gene transfer drives metabolic flexibility in the anaerobic methane-oxidizing archaeal family methanoperedenaceae // mBio. 2020. V. 11. № 3. https://doi.org/10.1128/mBio.01325-20
  28. Nelson K.E., Clayton R.A., Gill S.R. et al. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima // Nature. 1999. V. 399. № 6734. P. 323–329. https://doi.org/ 10.1038/20601
  29. Sieber K.B., Bromley R.E., Dunning Hotopp J.C. Lateral gene transfer between prokaryotes and eukaryotes // Exp. Cell. Res. 2017. V. 358. № 2. P. 421–426. https://doi.org/10.1016/j.yexcr.2017.02.009
  30. Ahmed M.Z., Breinholt J.W., Kawahara A.Y. Evidence for common horizontal transmission of Wolbachia among butterflies and moths // BMC Evol. Biol. 2016. V. 16. № 1. P. 118. https://doi.org/10.1186/s12862-016-0660-x
  31. Sibbald S.J., Eme L., Archibald J.M., Roger A.J. Lateral gene transfer mechanisms and pan-genomes in eukaryotes // Trends Parasitol. 2020. V. 36. № 11. P. 927–941. https://doi.org/10.1016/j.pt.2020.07.014
  32. Van Montagu M., Schell J. The Ti plasmids of Agrobacterium // Curr. Top. Microbiol. Immunol. 1982. V. 96. P. 237–254. https://doi.org/10.1007/978-3-642-68315-2_13
  33. Huang W., Tsai L., Li Y. et al. Widespread of horizontal gene transfer in the human genome // BMC Genomics. 2017. V. 18. № 1. P. 274. https://doi.org/10.1186/s12864-017-3649-y
  34. Li K., Yan F., Duan Z. et al. Widespread of horizontal gene transfer events in eukaryotes // bioRxiv. 2022. P. 1c38. https://doi.org/10.1101/2022.07.26.501571
  35. Danchin E.G. Lateral gene transfer in eukaryotes: tip of the iceberg or of the ice cube? // BMC Biol. 2016. V. 14. № 1. P. 101. https://doi.org/10.1186/s12915-016-0330-x
  36. Martin W.F. Too much eukaryote LGT // BioEssays. 2017. V. 39. № 12. https://doi.org/10.1002/bies.201700115
  37. Leger M.M., Eme L., Stairs C.W., Roger A.J. Demystifying eukaryote lateral gene transfer // BioEssays. 2018. V. 40. № 5. https://doi.org/10.1002/bies.201700242
  38. Cote-L'Heureux A., Maurer-Alcalá X.X., Katz L.A. Old genes in new places: A taxon-rich analysis of interdomain lateral gene transfer events // PLoS Genet. 2022. V. 18. № 6. https://doi.org/10.1371/journal.pgen.1010239
  39. Hibdige S.G.S., Raimondeau P., Christin P.A., Dunning L.T. Widespread lateral gene transfer among grasses // New Phytol. 2021. V. 230. № 6. P. 2474–2486. https://doi.org/ 10.1111/nph.17328
  40. Raimondeau P., Bianconi M.E., Pereira L. et al. Lateral gene transfer generates accessory genes that accumulate at different rates within a grass lineage // New Phytol. 2023. V. 240. № 5. P. 2072–2084. https://doi.org/10.1111/nph.19272
  41. Marti H., Suchland R.J., Rockey D.D. The impact of lateral gene transfer in Chlamydia // Front. Cell Infect. Microbiol. 2022. V. 12. https://doi.org/10.3389/fcimb.2022.861899
  42. Husnik F., Nikoh N., Koga R. et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis // Cell. 2013. V. 153. № 7. P. 1567–1578. https://doi.org/10.1016/j.cell.2013.05.040
  43. Artamonova I.I., Lappi T., Zudina L., Mushegian A.R. Prokaryotic genes in eukaryotic genome sequences: When to infer horizontal gene transfer and when to suspect an actual microbe // Environ. Microbiol. 2015. V. 17. № 7. P. 2203–2208. https://doi.org/10.1111/1462-2920.12854
  44. Ku C., Martin W.F. A natural barrier to lateral gene transfer from prokaryotes to eukaryotes revealed from genomes: The 70% rule // BMC Biol. 2016. V. 14. № 1. P. 89. https://doi.org/10.1186/s12915-016-0315-9
  45. Koutsovoulos G., Kumar S., Laetsch D.R. et al. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini // Proc. Natl Acad. Sci. USA. 2016. V. 113. № 18. P. 5053–5058. https://doi.org/10.1073/pnas.1525838113
  46. Douglas G.M., Langille M.G.I. Current and promising approaches to identify horizontal gene transfer events in metagenomes // Genome Biol. Evol. 2019. V. 11. № 10. P. 2750–2766. https://doi.org/10.1093/gbe/evz184
  47. Sheinman M., Arkhipova K., Arndt P.F. et al. Identical sequences found in distant genomes reveal frequent horizontal transfer across the bacterial domain // Elife. 2021. V. 10. https://doi.org/10.7554/eLife.62719
  48. Sheinman M., Arndt P.F., Massip F. Modeling the mosaic structure of bacterial genomes to infer their evolutionary history // Proc. Natl Acad. Sci. USA. 2024. V. 121. № 13. https://doi.org/10.1073/pnas.2313367121
  49. Серов О.Л. Перенос генов в соматические и половые клетки. Новосибирск: Наука, 1985. 120 с.
  50. Щелкунов С.Н. Клонирование генов. Новосибирск: Наука, 1986. 228 с.
  51. Щелкунов С.Н. Конструирование гибридных молекул ДНК. Новосибирск: Наука, 1987. 168 с.
  52. Газарян К.Г. Микроинъекция генов в зиготы и эмбрионы: интеграция в геном и генетические эффекты // Успехи соврем. генетики. 1985. Т. 75. № 13. С. 32–36.
  53. Giordano R., Magnano A.R., Zaccagnini G. et al. Reverse transcriptase activity in mature spermatozoa of mouse // J. Cell Biol. 2000. V. 148. № 6. P. 1107–1113. https://doi.org/10.1083/jcb.148.6.1107
  54. Sciamanna I., Barberi L., Martire A. et al. Sperm endogenous reverse transcriptase as mediator of new genetic information // Biochem. Biophys. Res. Commun. 2003. V. 312. № 4. P. 1039–1046. https://doi.org/org/10.1016/j.bbrc.2003.11.024
  55. Dinger M.E., Mercer T.R., Mattick J.S. RNAs as extracellular signaling molecules // J. Mol. Endocrinol. 2008. V. 40. № 4. P. 151–159. https://doi.org/10.1677/JME-07-0160
  56. Fire A., Xu S., Montgomery M.K. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans // Nature. 1998. V. 391. P. 806–811. https://doi.org/10.1038/35888
  57. Гершензон С.М. Пассивный перенос экзогенных молекул ДНК или синтетических полинуклеотидов сперматозоидами Drosophila в оплодотворенные яйца // Цитология и генетика. 1996. Т. 30(1). С. 5–8.
  58. Lavitrano M., Giovannoni R., Cerrito M.G. Methods for sperm-mediated gene transfer // Meth. Mol. Biol. 2013. V. 927. P. 519–529. https://doi.org/ 10.1007/978-1-62703-038-0_44
  59. García-Vázquez F.A., Ruiz S., Grullón L.A. et al. Factors affecting porcine sperm mediated gene transfer // Res. Veterinary Sci. 2011. V. 91. № 3. P. 446–453. https://doi.org/10.1016/j.rvsc.2010.09.015
  60. Lavitrano M., Busnelli M., Cerrito M.G. et al. Sperm-mediated gene transfer // Reprod., Fertility and Development. 2006. V. 18. P. 19–23. https://doi.org/10.1071/rd05124
  61. Кузнецов А.В., Кузнецова И.В. Подвижный вектор. М., 1998. 189 с.
  62. Smith K., Spadafora C. Sperm-mediated gene transfer: Аpplications and implications // BioEssays. 2005. V. 27. № 5. P. 551–562. https://doi.org/10.1002/bies.20211
  63. Kuznetsov A.V., Kuznetsova I.V., Schit I.Y. DNA interaction with rabbit sperm cells and its transfer into ova in vitro and in vivo // Mol. Reprod. Dev. 2000. V. 56(2). Suppl. l. P. 292–297. https://doi.org/10.1002/(SICI)1098-2795(200006)56:2+<292::AID-MRD18>3.0.CO;2-Z
  64. Collares T., Campos V.F., de Leon P.M. et al. Transgene transmission in chickens by sperm-mediated gene transfer after seminal plasma removal and exogenous DNA treated with dimethylsulfoxide or N,N-dimethylacetamide // J. Biosciences. 2011. V. 36. № 4. P. 613–620. https://doi.org/10.1007/s12038-011-9098-x
  65. Smith K. Gene therapy: The potential applicability of gene transfer technology to the human germline // Int. J. Med. Sci. 2004. V. 1. № 2. P. 76–91. https://doi.org/10.7150/ijms.1.76
  66. Bocharova E.N., Zavalishina L.E., Bragina E.E. et al. Detection of herpes simplex virus genomic DNA in spermatozoa of patients with fertility disorders by in situ hybridization // Dokl. Biol. Sci. 2007. V. 412. P. 82–86. https://doi.org/10.1134/s0012496607010279
  67. Gillespie J.J., Beier M.S., Rahman M.S., Ammerman N.C. Plasmids and rickettsial evolution: insight from rickettsia felis // PLoS One. 2007. V. 2. № 3. https://doi.org/ 10.1371/journal.pone.0000266
  68. Wan W., Li D., Li D., Jiao J. Advances in genetic manipulation of Chlamydia trachomatis // Front. Immunol. 2023. V. 14. https://doi.org/10.3389/fimmu.2023.1209879
  69. Stover C.K., Pham X.Q., Erwin A.L. et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen // Nature. 2000. V. 406. № 6799. P. 959–964. https://doi.org/10.1038/35023079
  70. Ogata H., La Scola B., Audic S. et al. Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens // PLoS Genet. 2006. V. 2. № 5. P. e76. https://doi.org/10.1371/journal.pgen.0020076
  71. Sano E., Carlson S., Wegley L., Rohwer F. Movement of viruses between biomes // Appl. Environ. Microbiol. 2004. V. 70. № 10. P. 5842–5846. https://doi.org/10.1016/j.bbrc.2003.11.024
  72. Denoeud F., Godfroy O., Cruaud C. et al. Evolutionary genomics of the emergence of brown algae as key components of coastal ecosystems // Cell. 2024. V. 187. № 24. P. 6943–6965. https://doi.org/10.1016/j.cell.2024.10.049
  73. Popa O., Dagan T. Trends and barriers to lateral gene transfer in prokaryotes // Curr. Opin. Microbiol. 2011. V. 14. № 5. P. 615–623. https://doi.org/10.1016/j.mib.2011.07.027
  74. Guan Z., Shi S., Diaby M. et al. Horizontal transfer of Buster transposons across multiple phyla and classes of animals // Mol. Phylogenet. Evol. 2022. V. 173. https://doi.org/10.1016/j.ympev.2022.107506
  75. Kuznetsov A. DNA interaction with sperm cells: ODE model // BMC Systems Biology. 2007. V. 1. Suppl. 1. P. P42. https://doi.org/10.1186/1752-0509-1-S1-P42
  76. Ragan M.A., Beiko R.G. Lateral genetic transfer: open issues // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2009. V. 364. № 1527. P. 2241–2251. https://doi.org/10.1098/rstb.2009.0031
  77. Emamalipour M., Seidi K., Zununi Vahed S. et al. Horizontal gene transfer: From evolutionary flexibility to disease progression // Front. Cell Dev. Biol. 2020. V. 8. https://doi.org/10.3389/fcell.2020.00229
  78. Gladyshev E.A., Meselson M., Arkhipova I.R. Massive horizontal gene transfer in bdelloid rotifers // Science. 2008. V. 320. № 5880. P. 1210–1213. https://doi.org/10.1126/science.1156407
  79. Eyres I., Boschetti C., Crisp A. et al. Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats // BMC Biol. 2015. V. 13. P. 90. https://doi.org/10.1186/s12915-015-0202-9
  80. Debortoli N., Li X., Eyres I. et al. Genetic exchange among bdelloid rotifers is more likely due to horizontal gene transfer than to meiotic sex // Curr. Biol. 2016. V. 26. № 6. P. 723–732. https://doi.org/10.1016/j.cub.2016.01.031
  81. Park J.C., Kim D.H., Kim M.S. et al. The genome of the euryhaline rotifer Brachionus paranguensis: Potential use in molecular ecotoxicology // Comp. Biochem. Physiol. Part D. Genomics Proteomics. 2021. V. 39. https://doi.org/10.1016/j.cbd.2021.100836

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025