Physcomitrium patens – модель для изучения эволюции белков с лектиновыми доменами у растений

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Мох Physcomitrium (ранее Physcomitrella) patens (Hedw.) Mitt. – бессемянное и бессосудистое растение с расшифрованным геномом, представитель наиболее древних из ныне живущих таксонов наземных растений – удобная модель для изучения эволюционного развития растений. С целью изучения формирования набора и функций углевод-связывающих белков у растений в ходе эволюции проведен полногеномный скрининг генов, кодирующих белки с лектиновыми доменами, в геноме P. patens, и проанализирована их экспрессия в различных клетках и тканях мха. Выявлен 141 ген, кодирующий белки из 15 семейств, набор и число представителей которых существенно отличались от проанализированных ранее покрытосеменных растений. У P. patens некоторые из белков с лектиновыми доменами обладали специфичной доменной архитектурой, не представленной у высших семенных растений. Кластеризация генов по уровню их экспрессии в различных тканях мха выявила три паттерна экспрессии генов белков с лектиновыми доменами, из которых третий кластер, представленный в клетках с концевым типом роста (в каулонеме, хлоронеме и ризоидах мха), характеризовался наибольшим количеством активно экспрессирующихся генов. Полученные результаты подтверждают идею о раннем появлении у растений генов, кодирующих лектины, и дальнейшем расширении семейств белков с лектиновыми доменами с усложнением организации растений.

Full Text

Restricted Access

About the authors

А. Р. Агълямова

Казанский институт биохимии и биофизики Федерального исследовательского центра “Казанский научный центр Российской академии наук”

Author for correspondence.
Email: aliaglyamova@yandex.ru
Russian Federation, Казань

А. Р. Хакимова

Казанский институт биохимии и биофизики Федерального исследовательского центра “Казанский научный центр Российской академии наук”

Email: aliaglyamova@yandex.ru
Russian Federation, Казань

О. В. Горшков

Казанский институт биохимии и биофизики Федерального исследовательского центра “Казанский научный центр Российской академии наук”

Email: aliaglyamova@yandex.ru
Russian Federation, Казань

Т. А. Горшкова

Казанский институт биохимии и биофизики Федерального исследовательского центра “Казанский научный центр Российской академии наук”

Email: aliaglyamova@yandex.ru
Russian Federation, Казань

References

  1. De Coninck T., Van Damme E.J.M. The multiple roles of plant lectins // Plant Sci. 2021. V. 313. P. 111096. https://doi.org/10.1016/j.plantsci.2021.111096
  2. Cove D.J., Perroud P.F., Charron A.J., McDaniel S.F., Khandelwal A., Quatrano R.S. The moss Physcomitrella patens: a novel model system for plant development and genomic studies // Cold Spring Harb. Protoc. 2009. V. 2009:pdb.emo115. https://doi.org/10.1101/pdb.emo115
  3. Rensing S.A., Lang D., Zimmer A.D., Terry A., Salamov A., Shapiro H., Nishiyama T., Perroud P.F., Lindquist E.A., Kamisugi Y., Tanahashi T., Sakakibara K., Fujita T., Oishi K., Shin-I T. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants // Science. 2008. V. 319. P. 64. https://doi.org/10.1126/science.1150646
  4. Van Holle S., Van Damme E.J.M. Messages from the past: new insights in plant lectin evolution // Front. Plant Sci. 2019. V. 10. P. 36. https://doi.org/10.3389/fpls.2019.00036
  5. Van Holle S., De Schutter K., Eggermont L., Tsaneva M., Dang L., Van Damme E.J.M. Comparative study of lectin domains in model species: new insights into evolutionary dynamics // Int. J. Mol. Sci. 2017. V. 18. P. 1136. https://doi: 10.3390/ijms18061136
  6. Van Damme E.J.M., Lannoo N., Peumans W.J. Plant lectins // Adv. Bot. Res. 2008. V. 48. P. 107. https://doi.org/10.1016/S0065-2296(08)00403-5
  7. Dinant S., Clark A.M., Zhu Y., Vilaine F., Palauqui J.C., Kusiak C., Thompson G.A. Diversity of the superfamily of phloem lectins (phloem protein 2) in angiosperms // Plant Physiol. 2003. V. 131. P. 114. https://doi.org/10.1104/pp.013086
  8. Fouquaert E., Peumans W.J., Vandekerckhove T., Ongenaert M., Van Damme E.J. Proteins with an Euonymus lectin-like domain are ubiquitous in Embryophyta // BMC Plant Biol. 2009. V. 9. P. 136. https://doi.org/10.1186/1471-2229-9-136
  9. Lang D., Ullrich K.K., Murat F., Fuchs J., Jenkins J., Haas F. B., Piednoel M., Gundlach H., Van Bel M., Meyberg R., Vives C., Morata J., Symeonidi A., Hiss M., Muchero W. et al. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution // Plant J. 2018. V. 93. P. 515. https://doi.org/10.1111/tpj.13801
  10. Goodstein D.M., Shu S., Howson R., Neupane R., Hayes R.D., Fazo J., Mitros T., Dirks W., Hellsten U., Putnam N., Rokhsar D.S. Phytozome: a comparative platform for green plant genomics // Nucleic Acids Res. 2012. V. 40. P. D1178. https://doi.org/10.1093/nar/gkr944
  11. Wang J., Chitsaz F., Derbyshire M.K., Gonzales N.R., Gwadz M., Lu S., Marchler G.H., Song J.S., Thanki N., Yamashita R.A., Yang M., Zhang D., Zheng C., Lanczycki C.J., Marchler-Bauer A. The conserved domain database in 2023 // Nucleic Acids Res. 2022. V. 51. P. D384. https://doi.org/10.1093/nar/gkac1096
  12. Thomas P.D., Ebert D., Muruganujan A., Mushayahama T., Albou L.P., Mi H. PANTHER: making genome‐scale phylogenetics accessible to all // Protein Sci. 2022. V. 31. P. 8. https://doi.org/10.1002/pro.4218
  13. Blum M., Chang H.Y., Chuguransky S., Grego T., Kandasaamy S., Mitchell A., Nuka G., Paysan-Lafosse T., Qureshi M., Raj S., Richardson L., Salazar G.A., Williams L., Bork P., Bridge A. The InterPro protein families and domains database: 20 years on // Nucleic Acids Res. 2021. V. 49. P. D344. https://doi.org/10.1093/nar/gkaa977
  14. Keller O., Kollmar M., Stanke M., Waack S. A novel hybrid gene prediction method employing protein multiple sequence alignments // Bioinformatics. 2011. V. 27. P. 757. https://doi.org/10.1093/bioinformatics/btr010
  15. Almagro Armenteros J.J., Tsirigos K.D., Sønderby C.K., Petersen T.N., Winther O., Brunak S., von Heijne G., Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks // Nat. Biotechnol. 2019. V. 37. P. 423. https://doi.org/10.1038/s41587-019-0036-z
  16. Krogh A., Larsson B., Von Heijne G., Sonnhammer E.L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes // J. Mol. Biol. 2001. V. 305. P. 567. https://doi.org/10.1006/jmbi.2000.4315
  17. Goldberg T., Hecht M., Hamp T., Karl T., Yachdav G., Ahmed N., Altermann U., Angerer P., Ansorge S., Balasz K., Bernhofer M., Betz A., Cizmadija L., Do K.T., Gerke J. LocTree3 prediction of localization // Nucleic Acids Res. 2014. V. 42. P. W350. https://doi.org/10.1093/nar/gku396
  18. Almagro Armenteros J.J., Sønderby C.K., Sønderby S.K., Nielsen H., Winther O. DeepLoc: prediction of protein subcellular localization using deep learning // Bioinformatics. 2017. V. 33. P. 3387. https://doi.org/10.1093/bioinformatics/btx431
  19. Madeira F., Park Y.M., Lee J., Buso N., Gur T., Madhusoodanan N., Basutkar P., Tivey A.R.N., Potter S.C, Finn R.D. Lopez R. The EMBL-EBI search and sequence analysis tools APIs in 2019 // Nucleic Acids Res. 2019. V. 47. P. W636. https://doi.org/10.1093/nar/gkz268
  20. Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput // Nucleic Acids Res. 2004. V. 32. P. 1792. https://doi.org/10.1093/nar/gkh340
  21. Aglyamova A., Petrova N., Gorshkov O., Kozlova L., Gorshkova T. Growing maize root: lectins involved in consecutive stages of cell development // Plants. 2022. V. 11. P. 1799. https://doi.org/10.3390/plants11141799
  22. Nguyen L.T., Schmidt H.A., Von Haeseler A., Minh B.Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies // Mol. Biol. Evol. 2015. V. 32. P. 268. https://doi.org/10.1093/molbev/msu300
  23. Kalyaanamoorthy S., Min B.Q., Wong T.K., Von Haeseler A., Jermiin L.S. ModelFinder: fast model selection for accurate phylogenetic estimates // Nat. Methods. 2017. V. 14. P. 587. https://doi.org/10.1038/nmeth.4285
  24. Minh B.Q., Nguyen M.A.T., Von Haeseler A. Ultrafast approximation for phylogenetic bootstrap // Mol. Biol. Evol. 2013. V. 30. P. 1188. https://doi.org/10.1093/molbev/mst024
  25. Letunic I., Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation // Nucleic Acids Res. 2021. V. 49. P. W293. https://doi.org/10.1093/nar/gkab301
  26. Garcia-Hernandez M., Berardini T., Chen G., Crist D., Doyle A., Huala E., Knee E., Lambrecht M., Miller N., Mueller L.A., Mundodi S., Reiser L., Rhee S.Y., Scholl R., Tacklind J. TAIR: a resource for integrated Arabidopsis data // Funct. Integr. Genomics. 2002. V. 2. P. 239. https://doi.org/10.1007/s10142-002-0077-z
  27. Ortiz-Ramírez C., Hernandez-Coronado M., Thamm A., Catarino B., Wang M., Dolan L., Feijó J.A., Becker J.D. A transcriptome atlas of Physcomitrella patens provides insights into the evolution and development of land plants // Mol. Plant. 2016. V. 9. P. 205. http://dx.doi.org/10.1016%2Fj.molp.2015.12.002
  28. R Development Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/
  29. Eggermont L., Verstraeten B., Van Damme E.J.M. Genome‐wide screening for lectin motifs in Arabidopsis thaliana // The plant genome. 2017. V. 10. plantgenome2017.02.0010. https://doi.org/10.3835/plantgenome2017.02.0010
  30. Petrova N., Nazipova A., Gorshkov O., Mokshina N., Patova O., Gorshkova T. Gene expression patterns for proteins with lectin domains in flax stem tissues are related to deposition of distinct cell wall types // Front. Plant Sci. 2021. V. 12. P. 634594. https://doi.org/10.3389/fpls.2021.634594
  31. Yang H., Wang D., Guo L., Pan H., Yvon R., Garman S., Wu H., Cheung A.Y. Malectin/Malectin-like domain-containing proteins: a repertoire of cell surface molecules with broad functional potential // Cell Surf. 2021. V. 7. P. 100056. https://doi.org/10.1016/j.tcsw.2021.100056
  32. Jiang S.Y., Ma Z., Ramachandran S. Evolutionary history and stress regulation of the lectin superfamily in higher plants // BMC Evol. Biol. 2010. V. 10. P. 1. https://doi.org/10.1186/1471-2148-10-79
  33. Jing X.Q., Shalmani A., Zhou M.R., Shi P.T., Muhammad I., Shi Y., Sharif R., Li W., Liu W., Chen K.M. Genome-wide identification of malectin/malectin-like domain containing protein family genes in rice and their expression regulation under various hormones, abiotic stresses, and heavy metal treatments // J. Plant Growth Regul. 2020. V. 39. P. 492. https://doi.org/10.1007/s00344-019-09997-8
  34. Bellande K., Bono J.J., Savelli B., Jamet E., Canut H. Plant lectins and lectin receptor-like kinases: how do they sense the outside? // Int. J. Mol. Sci. 2017. V. 18. P. 1164. https://doi.org/10.3390/ijms18061164
  35. Inamine S., Onaga S., Ohnuma T., Fukamizo T., Taira T. Purification, cDNA cloning, and characterization of LysM-containing plant chitinase from horsetail (Equisetum arvense) // Biosci. Biotechnol. Biochem. 2015. V. 79. P. 1296. https://doi.org/10.1080/09168451.2015.1025693
  36. Franck C.M., Westermann J., Boisson-Dernier A. Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond // Annu. Rev. Plant Biol. 2018. V. 69. P. 301. https://doi.org/10.1146/annurev-arplant-042817-040557
  37. De Coninck T., Van Damme E.J.M. Plant lectins: handymen at the cell surface // Cell Surf. 2022. V. 8. P. 100091. https://doi.org/10.1016/j.tcsw.2022.100091
  38. Ji D., Chen T., Zhang Z., Li B., Tian S. Versatile roles of the receptor-like kinase feronia in plant growth, development and host-pathogen interaction // Int. J. Mol. Sci. 2020. V. 21. P. 7881. https://doi.org/10.3390/ijms21217881
  39. Popper Z.A., Fry S.C. Primary cell wall composition of bryophytes and charophytes // Ann. Bot. 2003. V. 91. P. 1. https://doi.org/10.1093/aob/mcg013
  40. Mayer S., Raulf M.K., Lepenies B. C-type lectins: their network and roles in pathogen recognition and immunity // Histochem. Cell Biol. 2017. V. 147. P. 223. https://doi.org/10.1007/s00418-016-1523-7
  41. Ligrone R., Duckett J.G., Renzaglia K.S. Conducting tissues and phyletic relationships of bryophytes // Philos. Trans. R. Soc. 2000. V. 355. P. 795. https://doi.org/10.1098/rstb.2000.0616
  42. Stefanowicz K., Lannoo N., Van Damme E.J.M. Plant F-box proteins–judges between life and death // Crit. Rev. Plant Sci. 2015. V. 34. P. 523. https://doi.org/10.1080/07352689.2015.1024566
  43. Ye Z.H., Zhong R. Cell wall biology of the moss Physcomitrium patens // J. Exp. Bot. 2022. V. 73. P. 4440. https://doi.org/10.1093/jxb/erac122
  44. Vidali L., Bezanilla M. Physcomitrella patens: a model for tip cell growth and differentiation // Curr. Opin. Plant Biol. 2012. V. 15. P. 625. https://doi.org/10.1016/j.pbi.2012.09.008

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the specific domain organization of some proteins of the hevein and LysM families from the moss P. patens (numbers of the corresponding genes are given on the left). To avoid confusion, the names of all domains are taken from the InterPro database and are therefore given in English. Designations: SP – signal peptide; Cht_bd1 (short for chitin_bind_1) – chitin-binding domain of heveins (PF00187); GH18 – domain of chitinase classes III and V (PF00704); DPBB_1 – domain of double psi beta-barrel (PF03330); LysM – lectin domain of the LysM family (PF01476); Peptidase M23 – domain of peptidase M23 (PF01551); Destabilase – domain of glutaminase (PF05497); CH – domain homologous to calponin (PF00307); TM – transmembrane domain; NT-C2 – N-terminal C2 domain (PF10358). Image created with BioRender.com.

Download (145KB)
3. Fig. 2. Phylogenetic tree of representatives of the Jacalina family of moss P. patens, maize (Z. mays) and A. thaliana. The Robinson-Foulds distance for this tree was 0. Branching points with a support level below 90 were removed from the tree. The isolated clade of Jacalina moss is highlighted in gray.

Download (581KB)
4. Fig. 3. Clade of the phylogenetic tree of proteins of the CrRLK1L group of the malectin-like protein family from the moss P. patens, maize (Z. mays) and A. thaliana. For ease of visualization, other clades of malectin-like proteins and malectins were removed, the full tree is presented in the Supplementary Materials, Fig. 1. The Robinson-Foulds distance for this tree was 0. Branch points with a support level below 90 were removed from the tree. Clades containing moss proteins are additionally highlighted in gray.

Download (345KB)
5. Fig. 4. Expression of genes of the moss P. patens encoding proteins of the malectin-like and Nictaba families, as well as individual representatives of the hevein and LysM families with a specific domain organization. Their expression in different types of P. patens tissues is shown (according to [27]). For the sporophyte, the average expression value for all stages of sporophyte development is shown. The domain organization and the predicted in silico subcellular localization of proteins are shown.

Download (917KB)
6. Fig. 5. Results of hierarchical cluster analysis and heat map of expression levels of genes encoding proteins with lectin domains in different tissue types of the moss P. patens. The heat map shows the relative expression level of each gene (rows) in each sample (rows). The expression level in clusters is presented as a Z-score transformed logarithm of expression (color scale in the upper left corner of the figure). Three identified clusters are shown on the left side as vertical rectangles (red, green, blue).

Download (470KB)
7. Additional materials
Download (4MB)

Copyright (c) 2024 Russian Academy of Sciences