Electrical resistivity and optical properties of Co2−xMn1+xAl (x = 0, 0.25, 0.5, 0.75, 1) Heusler alloys

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In the temperature range from 78 to 293 K, the temperature dependences of the electrical resistivity of Co2−xMn1+xAl (x = 0, 0.25, 0.5, 0.75, 1) Heusler alloys as well as their optical properties in the range of (0.155–5) eV at room temperature. It is shown that the electrical resistivity of all alloys exceeds 250 µOhm×cm and grows with increasing manganese content to values exceeding 380 µOhm×cm, and the type of temperature dependence of electrical resistivity changes from “metallic” for Co2MnAl to “semiconductor-like” for Mn2CoAl with transition through the invar Co1.75Mn1.25Al. It is demonstrated that interband transitions play a crucial role in the formation of the optical properties of the studied alloys. It is found that at room temperature, the electrical conductivity and optical conductivity at 0.38 eV decrease with increasing manganese concentration at x = 0.5 and 0.75, respectively, and then change slightly with increasing x. It is suggested that this behavior is related to changes in the band spectrum of alloys, which are most strongly manifested in the Mn2CoAl alloy.

Full Text

Restricted Access

About the authors

A. A. Semiannikova

M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: semiannikova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

E. I. Shreder

M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: semiannikova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

A. A. Markin

M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: semiannikova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

Yu. A. Perevozchikova

M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: semiannikova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

P. B. Terentev

M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: semiannikova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

E. B. Marchenkova

M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: semiannikova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

V. V. Marchenkov

M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: march@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

References

  1. Graf T., Felser C., Parkin S.S.P. Simple rules for the understanding of Heusler compounds // Prog. Solid State Chem. 2011. V. 39. P. 1–50.
  2. Felser C., Hirohata A. Heusler Alloys: Properties, Growth, Applications. Springer International Publishing, 2016. 492 p.
  3. Tavares S., Yang K., Meyers M.A. Heusler alloys: Past, properties, new alloys, and prospects // Prog. Mater. Sci. 2023. V. 132. P. 101017.
  4. De Groot R.A., Mueller F.M., van Engen P.G., Buschow K.H.J. New class of materials: half-metallic ferromagnets // Phys. Rev. Lett. 1983. V. 50. P. 2024–2027.
  5. Ирхин В.Ю., Кацнельсон М.И. Полуметаллические ферромагнетики // УФН. 1994. Т. 164. № 7. С. 705–724.
  6. Wang X.L. Proposal for a new class of materials: spin gapless semiconductors // Phys. Rev. Lett. 2008. V. 100. P. 156404.
  7. Wang X.L. Dirac spin-gapless semiconductors: promising platforms for massless and dissipationless spintronics and new (quantum) anomalous spin Hall effects // Natl. Sci. Rev. 2017. V. 4. P. 252–257.
  8. Manna K., Sun Y., Muechler L., Kübler J., Felser C. Heusler, Weyl and Berry // Nat. Rev. Mater. 2018. V. 3. P. 244–256.
  9. Zhong M., Vu N.T.T., Zhai W., Soh J.R., Liu Y., Wu J., Suwardi A., Liu H., Chang G., Loh K.P., Gao W., Qiu C.-W., Yang J.K.W., Dong Z. Weyl Semimetals: from Principles, Materials to Applications / ArXiv. 2025. arXiv:2504.01300.
  10. Wang X., Cheng Z., Zhang G., Yuan H., Chen H., Wang X.-L. Spin-gapless semiconductors for future spintronics and electronics // Phys. Rep. 2020. V. 888. P. 1–57.
  11. Sharma S., Gupta D.C. Systematic investigation of structural, magneto-electronic, mechanical, thermophysical, optical and thermoelectric properties of Hf2VZ (Z = Ga, In, Tl) inverse Heusler alloy for spintronics applications // Sci. Rep. 2024. V. 14. P. 28542.
  12. Katsnelson M.I., Irkhin V.Yu., Chioncel L., Lichtenstein A.I., de Groot R.A. Half-metallic ferromagnets: from band structure to many-body effects // Rev. Mod. Phys. 2008. V. 80. P. 315–378.
  13. Galanakis I., Dederichs P.H. Half-Metallicity and Slater–Pauling Behavior in the Ferromagnetic Heusler Alloys / Chapter in: Galanakis I., Dederichs P. (eds). Half-metallic Alloys. Lecture Notes in Physics. Berlin–Heidelberg: Springer, 2005. V. 676. P. 1–39.
  14. Марченков В.В., Ирхин В.Ю. Полуметаллические ферромагнетики, спиновые бесщелевые полупроводники и топологические полуметаллы на основе сплавов Гейслера: теория и эксперимент // ФММ. 2021. Т. 122. С. 1221–1246.
  15. Marchenkov V.V., Irkhin V.Yu., Semiannikova A.A. Unusual Kinetic Properties of Usual Heusler Alloys // J. Supercond. Nov. Magn. 2022. V. 35. P. 2153–2168.
  16. Ouardi S., Fecher G.H., Felser C., Kübler J. Realization of spin gapless semiconductors: the Heusler compound Mn2CoAl // Phys. Rev. Lett. 2013. V. 110. P. 100401.
  17. Ouardi S., Fecher G.H., Felser C., Kübler J. Erratum: Realization of spin gapless semiconductors: the Heusler compound Mn2CoAl // Phys. Rev. Lett. 2019. V. 122. P. 059901.
  18. Marchenkov V.V., Irkhin V.Yu. Magnetic States and Electronic Properties of Manganese-Based Intermetallic Compounds Mn2YAl and Mn3Z (Y = V, Cr, Fe, Co, Ni; Z = Al, Ge, Sn, Si, Pt) // Materials. 2023. V. 16. P. 6351–6370.
  19. Xu S.-Y., Belopolski I., Alidoust N., Neupane M., Bian G., Zhang C., Sankar R., Chang G., Yuan Z., Lee C.-C., Huang S.-M., Zheng H., Ma J., Sanchez D.S., Wang B., Bansil A., Chou F., Shibayev P.P., Lin H., Jia S., Zahid Hasan M. Discovery of a Weyl fermion semimetal and topological Fermi arcs // Science. 2015. V. 349. P. 613–617.
  20. Belopolski I., Manna K., Sanchez D.S., Chang G., Ernst B., Yin J., Zhang S.S., Cochran T., Shumiya N., Zheng H., Singh B., Bian G., Multer D., Litskevich M., Zhou X., Huang S.-M., Wang B., Chang T.-R., Xu S.-Y., Bansil A., Felser C., Lin H., Zahid Hasan M. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet // Science. 2019. V. 365. P. 1278–1281.
  21. Kübler J., Felser C. Weyl points in the ferromagnetic Heusler compound Co2MnAl // EPL. 2016. V. 114. P. 47005.
  22. Li P., Koo J., Ning W., Li J., Miao L., Min L., Zhu Y., Wang Y., Alem N., Liu C.-X., Mao Z., Yan B. Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl // Nat. Comm. 2020. V. 11. P. 3476.
  23. Marchenkov V.V., Weber H.W., Cherepanov A.N., Startsev V.E. Experimental verification and quantitative analysis of the temperature (phonon) breakdown phenomenon in the high-field magnetoresistivity of compensated metals // J. Low Temp. Phys. 1996. V. 102. P. 133–155.
  24. Шредер Е.И., Свяжин А.Д., Махнев А.А. Эволюция электронной структуры и оптических свойств сплавов Гейслера на основе железа // Оптика и спектроскопия. 2015. Т. 119. № 6. С. 960–965.
  25. Mooij J.H. Electrical conduction in concentrated disordered transition metal alloys // Phys. Stat. Sol. 1973. V. 17. P. 521–530.
  26. Семянникова А.А., Перевозчикова Ю.А., Коренистов П.С., Марченкова Е.Б., Королев А.В., Марченков В.В. Магнитные и электрические свойства соединений Гейслера Co2MnZ (Z = Al, Si, Ga, Ge, Sn) // ФММ. 2022. V. 123. № 7. P. 753–758.
  27. Соколов А.В. Оптические свойства металлов. М.: Физ.-мат. Лит., 1961. 464 с.
  28. Шредер Е.И., Лукоянов А.В., Мухачев Р.Д., Филанович А.Н., Даш Ш., Патра А.К., Васундхара М. Электронная структура и оптические свойства сплавов Гейслера Mn2xFe1+xAl (x = –0.5, 0, 0.5, 1) // ФММ. 2023. Т. 124. № 3. С. 257–263.
  29. Шредер Е.И., Филанович А.Н., Чернов Е.Д., Лукоянов А.В., Марченков В.В., Сташкова Л.А. Электронная структура, термоэлектрические и оптические свойства сплавов Гейслера Mn2MeAl (Me = Ti, V, Cr) // ФММ. 2023. Т. 124. № 7. С. 608–615.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Temperature dependences of electrical resistance of Co2-xMn1+xAl alloys (x = 0, 0.25, 0.5, 0.75, 1).

Download (601KB)
3. Fig. 2. Dispersion of the real ε1 and imaginary ε2 parts of the permittivity of Co2-хMn1+хAl alloys (x = 0, 0.25, 0.5, 0.75, 1).

Download (546KB)
4. Fig. 3. Dispersion of optical conductivity σ(ω) of Co2-хMn1+хAl alloys (x = 0, 0.25, 0.5, 0.75, 1).

Download (687KB)
5. Fig. 4. Dependences (a) of electrical conductivity σst = 1/ρ and (b) optical conductivity σ on concentration x for Heusler alloys Co2−xMn1+xAl (x = 0, 0.25, 0.5, 0.75, 1) at room temperature.

Download (666KB)