Oxidized Disulfiram Derivatives Activate an Integrated Stress Response and Cause Paraptosis of Human Cancer Cells BT474

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Disulfiram, a well-known anti-alcohol drug with minimal side effects, as well as other dithiocarbamates are being investigated as part of the Drug Repurposing program in order to expand their use, including in oncology. In this work, using the example of human tumor cells BT474, it was found that the action of oxidized disulfiram metabolites generated by aerobic oxidation of diethyldithiocarbamate in the presence of the catalyst cobalamin (vitamin B12b) causes stress in the endoplasmic reticulum, and the integrated stress leads to cell death by paraptosis. The ability of substances of this class to cause non-apoptotic types of cell death is of interest for the development of new approaches in oncotherapy.

About the authors

M. E Solovieva

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: ms0@mail.ru
Pushchino, Russia

I. V Odinokova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

Yu. V Shatalin

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences

Pushchino, Russia; Moscow, Russia

A. A Mishukov

Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences

Moscow, Russia

E. L Holmuhamedov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Samarkand International Technological University

Pushchino, Russia; Samarkand, Uzbekistan

V. S Akatov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

References

  1. Weiser Drozdkova D. and Smesny Trtkova K. Possible therapeutic potential of disulfiram for multiple myeloma. Curr. Oncol., 28 (3), 2087–2096 (2021). doi: 10.3390/curroncol28030193
  2. Kannappan V., Ali M., Small B., Rajendran G., Elzhenni S., Taj H., Wang W., and Dou Q. P. Recent Advances in repurposing disulfiram and disulfiram derivatives as copper-dependent anticancer agents. Front. Mol. Biosci., 8, 741316 (2021). doi: 10.3389/fmolb.2021.741316
  3. Gan Y., Liu T., Feng W., Wang L., Li L. I., and Ning Y. Drug repositioning of disulfiram induces endometrioid epithelial ovarian cancer cell death via the both apoptosis and cuproptosis pathways. Oncol. Res., 31 (3), 333–343 (2023). doi: 10.32604/or.2023.028694
  4. Xu X., Han Y., Deng J., Wang S., Zhuo S., Zhao K., and Zhou W. Repurposing disulfiram with CuET nanocrystals: Enhancing anti-pyroptotic effect through NLRP3 inflammasome inhibition for treating inflammatory bowel diseases. Acta Pharmacol. Sin. B, 14 (6), 2698–2715 (2024). doi: 10.1016/j.apsb.2024.03.003
  5. Nechushtan H., Hamamreh Y., Nidal S., Gotfried M., Baron A., Shalev Y. I., Nisman B., Peretz T., and PeylanRamu N. A phase IIb trial assessing the addition of disulfiram to chemotherapy for the treatment of metastatic non-small cell lung cancer. Oncologist, 20 (4), 366–367 (2015). doi: 10.1634/theoncologist.2014-0424
  6. Lanz J., Biniaz-Harris N., Kuvaldina M., Jain S., Lewis K., and Fallon B. A. Disulfiram: Mechanisms, applications, and challenges. Antibiotics, 12 (3), (2023). doi: 10.3390/antibiotics12030524
  7. Kanellis D. C., Zisi A., and Skrott Z. Actionable cancer vulnerability due to translational arrest, p53 aggregation and ribosome biogenesis stress evoked by the disulfiram metabolite CuET. Cell Death Differ., 30 (7), 1666–1678 (2023). doi: 10.1038/s41418-023-01167-4
  8. Wu X., Xue X., Wang L., Wang W., Han J., Sun X., Zhang H., Liu Y., Che X., Yang J., and Wu C. Suppressing autophagy enhances disulfiram/copper-induced apoptosis in non-small cell lung cancer. Eur. J. Pharmacol., 827, 1–12 (2018). doi: 10.1016/j.ejphar.2018.02.039
  9. Ren L., Feng W., Shao J., Ma J., Xu M., Zhu B. Z., Zheng N., and Liu S. Diethyldithiocarbamate-copper nanocomplex reinforces disulfiram chemotherapeutic efficacy through light-triggered nuclear targeting. Theranostics, 10 (14), 6384–6398 (2020). doi: 10.7150/thno.45558
  10. Zhong S., Shengyu L., Xin S., Zhang X., Li K., Liu G., Li L., Tao S., Zheng B., Sheng W., Ye Z., Xing Q., Zhai Q., Ren L., Wu Y., and Bao Y. Disulfiram in glioma: Literature review of drug repurposing. Front. Pharmacol., 13, 933655 (2022). doi: 10.3389/fphar.2022.933655
  11. Nobel C. I., Kimland M., Lind B., Orrenius S., and Slater A. F. Dithiocarbamates induce apoptosis in thymocytes by raising the intracellular level of redox-active copper. J. Biol. Chem., 270 (44), 26202–26208 (1995). doi: 10.1074/jbc.270.44.26202
  12. Mays D. C., Nelson A. N., Lam-Holt J., Fauq A. H., and Lipsky J. J. S-methyl-N,N-diethylthiocarbamate sulfoxide and S-methyl-N,N-diethylthiocarbamate sulfone, two candidates for the active metabolite of disulfiram. Alcohol.: Clin. Exp. Res., 20 (3), 595–600 (1996). doi: 10.1111/j.1530-0277.1996.tb01099.x
  13. Lipsky J. J., Shen M. L., and Naylor S. Overview – in vitro inhibition of aldehyde dehydrogenase by disulfiram and metabolites. Chem. Biol. Interact., 130–132 (1–3), 81–91 (2001). doi: 10.1016/s0009-2797(00)00224-6
  14. Ningaraj N. S., Schloss J. V., Williams T. D., and Faiman M. D. Glutathione carbamoylation with S-methyl N,N-diethylthiolcarbamate sulfoxide and sulfone. Mitochondrial low Km aldehyde dehydrogenase inhibition and implications for its alcohol-deterrent action. Biochem. Pharmacol., 55 (6), 749–756 (1998). doi: 10.1016/s0006-2952(97)00513-3
  15. Solovieva M. E., Shatalin Y. V., Solovyev V. V., Sazonov A. V., Kutyshenko V. P., and Akatov V. S. Hydroxycobalamin catalyzes the oxidation of diethyldithiocarbamate and increases its cytotoxicity independently of copper ions. Redox Biol., 20, 28–37 (2019). doi: 10.1016/j.redox.2018.09.016
  16. Solovieva M., Shatalin Y., Fadeev R., Krestinina O., Baburina Y., Kruglov A., Kharechkina E., Kobyakova M., Rogachevsky V., Shishkova E., and Akatov A. V. Vitamin B12b enhances the cytotoxicity of diethyldithiocarbamate in a synergistic manner, inducing the paraptosis-like death of human Larynx carcinoma cells. Biomolecules, 10 (1), (2020). doi: 10.3390/biom10010069
  17. Solovieva M., Shatalin Y., Odinokova I., Krestinina O., Baburina Y., Mishukov A., Lomovskaya Y., Pavlik L., Mikheeva I., Holmuhamedov E., and Akatov V. Disulfiram oxy-derivatives induce entosis or paraptosis-like death in breast cancer MCF-7 cells depending on the duration of treatment. Biochim. Biophys. Acta. Gen. Subj., 1866 (9), 130184 (2022). doi: 10.1016/j.bbagen.2022.130184
  18. Dumay A., Rincheval V., Trotot P., Mignotte B., and Vayssière J. L. The superoxide dismutase inhibitor diethyldithiocarbamate has antagonistic effects on apoptosis by triggering both cytochrome c release and caspase inhibition. Free Rad. Biol. Med., 40 (8), 1377–1390 (2006). doi: 10.1016/j.freeradbiomed.2005.12.005
  19. Park S. S., Lee D. M., Lim J. H., Lee D., Park S. J., Kim H. M., Sohn S., Yoon G., Eom Y. W., Jeong S. Y., Choi E. K., and Choi K. S. Pyrrolidine dithiocarbamate reverses Bcl-xL-mediated apoptotic resistance to doxorubicin by inducing paraptosis. Carcinogenesis, 39 (3), 458–470 (2018). doi: 10.1093/carcin/bgy003
  20. Qiu C., Zhang X., Huang B., Wang S., Zhou W., Li C., Li X., Wang J., and Yang N. Disulfiram, a ferroptosis inducer, triggers lysosomal membrane permeabilization by up-regulating ROS in glioblastoma. Onco Targets Ther., 13, 10631–10640 (2020). doi: 10.2147/ott.s272312
  21. Tsvetkov P. and Coy S. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 375 (6586), 1254–1261 (2022). doi: 10.1126/science.abf0529
  22. Gao X., Huang H., Pan C., and Mei Z. Disulfiram/copper induces immunogenic cell death and enhances CD47 blockade in hepatocellular carcinoma. Cancers, 14 (19), (2022). doi: 10.3390/cancers14194715
  23. Tardito S., Bassanetti I., Bignardi C., Elviri L., Tegoni M., Mucchino C., Bussolati O., Franchi-Gazzola R., and Marchiò L. Copper binding agents acting as copper ionophores lead to caspase inhibition and paraptotic cell death in human cancer cells. J. Am. Chem. Soc., 133 (16), 6235–6242 (2011). doi: 10.1021/ja109413c
  24. Sperandio S., Poksay K., de Belle I., Lafuente M. J., Liu B., Nasir J., and Bredesen D. E. Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ., 11 (10), 1066–1075 (2004). doi: 10.1038/sj.cdd.4401465
  25. Hanson S., Dharan A., P V J., Pal S., Nair B. G., Kar R., and Mishra N. Paraptosis: a unique cell death mode for targeting cancer. Front. Pharmacol., 14, 1159409 (2023). doi: 10.3389/fphar.2023.1159409
  26. Monel B., Compton A. A., Bruel T., Amraoui S., Burlaud-Gaillard J., Roy N., Guivel-Benhassine F., Porrot F., Génin P., Meertens L., Sinigaglia L., Jouvenet N., Weil R., Casartelli N., Demangel C., Simon-Lorière E., Moris A., Roingeard P., Amara A., and Schwartz O. Zika virus induces massive cytoplasmic vacuolization and paraptosis-like death in infected cells. EMBO J., 36 (12), 1653–1668 (2017). doi: 10.15252/embj.201695597
  27. Huang X., Huang Y., Yang Y., Wei S., and Qin Q. Involvement of fish signal transducer and activator of transcription 3 (STAT3) in SGIV replication and virus induced paraptosis. Fish Shellfish Immunol., 41 (2), 308–316 (2014). doi: 10.1016/j.fsi.2014.09.011
  28. Pyrczak-Felczykowska A., Reekie T. A., Jąkalski M., Hać A., Malinowska M., Pawlik A., Ryś K., GuzowKrzemińska B., and Herman-Antosiewicz A. The isoxazole derivative of usnic acid induces an ER stress response in breast cancer cells that leads to paraptosis-like cell death. Int. J. Mol. Sci., 23 (3), 1802 (2022). doi: 10.3390/ijms23031802
  29. Wang X., Hua P., He C., and Chen M. Non-apoptotic cell death-based cancer therapy: Molecular mechanism, pharmacological modulators, and nanomedicine. Acta Pharmacol. Sin. B, 12 (9), 3567–3593 (2022). doi: 10.1016/j.apsb.2022.03.020
  30. Lee H. J., Lee D. M., Seo M. J., Kang H. C., Kwon S. K., and Choi K. S. PSMD14 targeting triggers paraptosis in breast cancer cells by inducing proteasome inhibition and Ca2+ imbalance. Int. J. Mol. Sci., 23 (5), 2648 (2022). doi: 10.3390/ijms23052648
  31. Mandula J. K., Chang S., Mohamed E., Jimenez R., Sierra-Mondragon R. A., Chang D. C., Obermayer A. N., Moran-Segura C. M., Das S., Vazquez-Martinez J. A., Prieto K., Chen A., Smalley K. S. M., Czerniecki B., Forsyth P., Koya R. C., Ruffell B., Cubillos-Ruiz J. R., Munn D. H., Shaw T. I., Conejo-Garcia J. R., and Rodriguez P. C. Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses. Cancer Cell, 40 (10), 1145–1160.e1149 (2022). doi: 10.1016/j.ccell.2022.08.016
  32. Park W., Wei S., Kim B.-S., Kim B., Bae S.-J., Chae Y. C., Ryu D., and Ha K.-T. Diversity and complexity of cell death: a historical review. Exp. Mol. Med., 55 (8), 1573–1594 (2023). doi: 10.1038/s12276-023-01078-x
  33. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J. Y., White D. J., Hartenstein V., Eliceiri K., Tomancak P., and Cardona A. Fiji: an open-source platform for biological-image analysis. Nat. Methods, 9 (7), 676–682 (2012). doi: 10.1038/nmeth.2019.
  34. Sauler M., Bazan I. S., and Lee P. J. Cell death in the lung: The apoptosis-necroptosis axis. Ann. Rev. Physiol., 81, 375–402 (2019). doi: 10.1146/annurev-physiol-020518-114320
  35. Grignano E., Birsen R., Chapuis N., and Bouscary D. From iron chelation to overload as a therapeutic strategy to induce ferroptosis in leukemic cells. Front. Oncol., 10, 586530 (2020). doi: 10.3389/fonc.2020.586530
  36. Dixon S. J., Lemberg K. M., Lamprecht M. R., Skouta R., Zaitsev E. M., Gleason C. E., Patel D. N., Bauer A. J., Cantley A. M., Yang W. S., Morrison B., and Stockwell B. R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 149 (5), 1060–1072 (2012). doi: 10.1016/j.cell.2012.03.042
  37. Solovieva M., Shatalin Y., Odinokova I., Krestinina O., Baburina Y., Lomovskaya Y., Pankratov A., Pankratova N., Buneeva O., Kopylov A., Medvedev A., and Akatov V. Disulfiram oxy-derivatives suppress protein retrotranslocation across the er membrane to the cytosol and initiate paraptosis-like cell death. Membranes, 12 (9), 845 (2022). doi: 10.3390/membranes12090845
  38. Liu Y., Shoji-Kawata S., Sumpter R. M. Jr., Wei Y., Ginet V., Zhang L., Posner B., Tran K. A., Green D. R., Xavier R. J., Shaw S. Y., Clarke P. G., Puyal J., and Levine B. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl. Acad. Sci. USA, 110 (51), 20364–20371 (2013). doi: 10.1073/pnas.1319661110
  39. Pakos-Zebrucka K., Koryga I., Mnich K., Ljujic M., and Samali A. The integrated stress response. EMBO Rep., 17 (10), 1374–1395 (2016). doi: 10.15252/embr.201642195
  40. Kalinin A., Zubkova E., and Menshikov M. Integrated stress response (ISR) pathway: unraveling its role in cellular senescence. Int. J. Mol. Sci., 24 (24), 17423 (2023). doi: 10.3390/ijms242417423
  41. Lu H. J., Koju N., and Sheng R. Mammalian integrated stress responses in stressed organelles and their functions. Acta Pharmacol. Sin., 45 (6), 1095–1114 (2024). doi: 10.1038/s41401-023-01225-0
  42. Oyadomari S. and Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ., 11 (4), 381–389 (2004). doi: 10.1038/sj.cdd.4401373
  43. Wang Z., Jiang H., Cai L. Y., Ji N., and Zeng X. Repurposing disulfiram to induce OSCC cell death by cristae dysfunction promoted autophagy. Oral Dis., 27 (5), 1148–1160 (2021). doi: 10.1111/odi.13652
  44. Zhang J., Gao R. F., Li J., Yu K. D., and Bi K. X. Alloimperatorin activates apoptosis, ferroptosis, and oxeiptosis to inhibit the growth and invasion of breast cancer cells in vitro. Biochem. Cell Biol., 100 (3), 213–222 (2022). doi: 10.1139/bcb-2021-0399
  45. Соловьева М. Е., Шаталин Ю. В. и Акатов В. С. Параптоз и другие типы неапоптотической регулируемой гибели клеток. Биофизика, 69 (4), 786–804 (2024). doi: 10.31857/s0006302924040117
  46. Zwerger M., Kolb T., Richter K., Karakesisoglou I., and Herrmann H. Induction of a massive endoplasmic reticulum and perinuclear space expansion by expression of lamin B receptor mutants and the related sterol reductases TM7SF2 and DHCR7. Mol. Biol. Cell, 21 (2), 354–368 (2010). doi: 10.1091/mbc.e09-08-0739.
  47. Lukášová E., Kovařík A., and Kozubek S. Consequences of Lamin B1 and Lamin B receptor downregulation in senescence. Cells, 7 (2), (2018). doi: 10.3390/cells7020011
  48. Kobyakova M., Lomovskaya Y., Senotov A., Lomovsky A., Minaychev V., Fadeeva I., Shtatnova D., Krasnov K., Zvyagina A., Odinokova I., Akatov V., and Fadeev R. The increase in the drug resistance of acute myeloid leukemia THP-1 cells in high-density cell culture is associated with inflammatory-like activation and antiapoptotic Bcl-2 proteins. Int. J. Mol. Sci., 23 (14) (2022). doi: 10.3390/ijms23147881
  49. Sun Q., Chen T., Wang X., and Wei X. Taxol induces paraptosis independent of both protein synthesis and MAPK pathway. J. Cell. Physiol., 222 (2), 421–432 (2010). doi: 10.1002/jcp.21982
  50. Wang L., Gundelach J. H., and Bram R. J. Cycloheximide promotes paraptosis induced by inhibition of cyclophilins in glioblastoma multiforme. Cell Death Dis., 8 (5), e2807 (2017). doi: 10.1038/cddis.2017.217

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences