A Method for Obtaining Covalent Conjugates of QD Particles with Enzymes Involved in Thrombosis and Thrombolysis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Covalent complexes of prourokinae, miniplasmin, and thrombin with QD nanoparticles containing aldehyde, amino, and carboxyl groups on the surface were obtained. It was shown that under the selected immobilization conditions, the listed enzymes immobilized on QD nanoparticles fully retained their enzymatic activity, and the formed complexes were stable colloids. The coating density of nanoparticles with enzymes reached 50–100 molecules per a particle. The immobilization of enzymes on carboxylic nanoparticles was performed using carbodiimide. Unlike the technology with carboxyl groups, the immobilization of enzymes on aldehyde nanoparticles does not require the use of carbodiimide to form a covalent complex and does not require a procedure for washing reagents before adding enzymes to nanoparticles, which improves the reproducibility of the immobilization procedure. It has been shown that particles with immobilized thrombin, when incubated with fibrinogen or blood plasma, form microemboli, which in vitro are completely destroyed by plasmin in the physiological concentration of the latter.

About the authors

L. P Savochkina

Research Institute of Experimental Cardiology named after academician V.N. Smirnov of the National Medical Research Center for Cardiology named after academician Ye. Chazov, Ministry of Health of the Russian Federation

Moscow, Russia

T. N Belyanko

Research Institute of Experimental Cardiology named after academician V.N. Smirnov of the National Medical Research Center for Cardiology named after academician Ye. Chazov, Ministry of Health of the Russian Federation

Moscow, Russia

Z. I Tsokolaeva

Research Institute of Experimental Cardiology named after academician V.N. Smirnov of the National Medical Research Center for Cardiology named after academician Ye. Chazov, Ministry of Health of the Russian Federation

Moscow, Russia

R. Sh Bibilashvili

Research Institute of Experimental Cardiology named after academician V.N. Smirnov of the National Medical Research Center for Cardiology named after academician Ye. Chazov, Ministry of Health of the Russian Federation

Email: r.bibilashvili@yandex.ru
Moscow, Russia

References

  1. Seeger W., Elssner A., Gunther A., Kramer H. J., and Kalinowski H. O. Lung surfactant phospholipids associate with polymerizing fibrin: loss of surface activity. Am. J. Respir. Cell Mol Biol., 9, 213–220 (1993). doi: 10.1165/ajrcmb/9.2.213
  2. Seeger W., Stohr G., Wolf H. R., and Neuhof H. Alteration of surfactant function due to protein leakage: special interaction with fibrin monomer. J. Appl. Physiol., 58, 326–338 (1985). doi: 10.1152/jappl.1985.58.2.326
  3. Fukuda Y., Ishizaki M., Masuda Y., Kimura G., Kawanami O., and Masugi Y. The role of intra alveolar fibrosis in the process of pulmonary structural remodeling in patients with diffuse alveolar damage. Am. J. Pathol., 126 (1), 171–182 (1987).
  4. Ganda S., Levi M., and Toh C. H. Disseminated intravascular coagulation. Nature Rev. Dis. Primers, 2, 16037 (2016). doi: 10.1038/nrdp.2016.37
  5. Fox S. E., Atmakbekov A., Harbert J. L., Li G., Brown J. Q., and Vander Heide R. S. Pulmonary and cardiac pathology in Covid-19: The first autopsy series from New Orleans. MedRxiv [Preprint] (2020). doi: 10.1101/2020.04.06.20050575
  6. Liu Z. H., Wei R., Wu Y. P., Lisman T., Wang Z. X., Han J. J., Ren D. L., Chen B., Xia Z. L., Chen B., Zhu Z., Zhang Y., Cui X., Hu H. T., de Groot P. G, and Xu W. B. Elevated plasma tissue-type plasminogen activator (tPA) and soluble thrombomodulin in patients suffering from severe acute respiratory syndrome (SARS) as a possible index for prognosis and treatment strategy. Biomed. Environ. Sci., 18 (4), 260–264 (2005).
  7. Tang N., Li D., Wang X., and Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost., 18 (4), 844–847 (2020). doi: 10.1111/jth.14768
  8. Idell S. Coagulation, fibrinolysis, and fibrin deposition in acute lung injury. Crit. Care Med., 31 (Suppl. 4), S213– S220 (2003). doi: 10.1097/01.CCM.0000057846.21303.AB
  9. Levi M., Schultz M. J., Rijneveld A. W., and van der Poll T. Bronchoalveolar coagulation and fibrinolysis in endotoxemia and pneumonias. Crit. Care Med., 31 (Suppl. 4), S238–S242 (2003). doi: 10.1097/01.CCM.0000057849.53689.65
  10. Welty-Wolf K. E., Carraway M. S., Ortel T. L., and Piantadosi C. A. Coagulation and inflammation in acute lung injury. Thromb. Haemost., 88 (1), 17–25 (2002).
  11. Schultz M. J., Haitsma J. J., Zhang H., and Slutsky A. S. Pulmonary coagulopathy as a new target in therapeutic studies of acute lung injury or pneumonia – a review. Crit. Care Med., 34 (3), 871–877 (2006).
  12. Katzenstein A. Diagnostic Atlas of Non-Neoplastic Lung Disease: a Practical Guide for Surgical Pathologists (LLC:Springer Publishing Company, NY, 2016), pp. 115– 126.
  13. Liu W., Jawerth L. M., Sparks E. A., Falvo M. R., Hantgan R. R., Superfine R., Lord S. T., and Guthold M. Fibrin fibers have extraordinary extensibility and elasticity. Science, 313 (5787), 634 (2006). doi: 10.1126/science.1127317
  14. Weisel J. W. The mechanical properties of fibrin for basic scientists and clinicians. Biophys. Chem., 112 (2–3), 267– 276 (2004). doi: 10.1016/j.bpc.2004.07.029
  15. Brown A. E., Litvinov R. I., Discher D. E., and Weisel J. W. Forced unfolding of coiled-coils in fibrinogen by single-molecule AFM. Biophys. J., 92 (5), L39–L41 (2007). doi: 10.1529/biophysj.106.101261
  16. Yang L., Scott P. G., Giuffre J., Shankowsky H. A., Ghahary A., and Tredget E. E. Peripheral blood fibrocytes from burn patients: identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells. Lab. Invest., 82 (9), 1183–1192 (2002). doi: 10.1097/01.LAB.0000027841.50269.61
  17. Moore B. B., Kolodsick J. E., Thannickal V. J., Cooke K., Moore T. A., Hogaboam C., Wilke C. A, and Toews G. B. CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am. J. Pathol., 166 (3), 675–684 (2005). doi: 10.1016/S0002-9440(10)62289-4
  18. Taniguchi H., Yoshida I., Sakamoto M., and Maeno T. Epiretinal membrane appearance or progression after intravitreal injection in age-related macular degeneration. BMC Ophthalmol., 21 (1), 190 (2021). doi: 10.1186/s12886-021-01944-0
  19. Barazzone C., Belin D., Piguet P. F., Vassalli J. D., and Sappino A. P. Plasminogen activator inhibitor-1 in acute hyperoxic mouse lung injury. J. Clin. Invest., 98, 2666– 2673 (1996). doi: 10.1172/JCI119089
  20. Bertozzi P., Astedt B., Zenzius L., Lynch K., LeMaire F., Zapol W., Chapman H. A. Jr. Depressed bronchoalveolar urokinase activity in patients with adult respiratory distress syndrome. N. Engl. J. Med., 322 (13), 890–897 (1990). doi: 10.1056/NEJM199003293221304
  21. Idell S., James K. K., Levin E. G., Schwartz B. S., Manchanda N., Maunder R. J., Martin T. R., McLarty J., and Fair D. S. Local abnormalities in coagulation and fibrinolytic pathways predispose to alveolar fibrin deposition in the adult respiratory distress syndrome. J. Clin. Invest., 84 (2), 695–705 (1989). doi: 10.1172/JCI114217
  22. Martino M. M., Briquez P. S., Ranga A., Lutolf M. P., and Hubbell J. A. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc. Natl. Acad. Sci. USA, 110 (12), 4563–4568 (2013). doi: 10.1073/pnas.1221602110
  23. Dahlem P., Bos A. P., Haitsma J. J., Schultz M. J., Wolthuis E. K., Meijers, J. C. M., and Lachmann B. Mechanical ventilation affects alveolar fibrinolysis in LPS-induced lung injury. Eur. Respir. J., 28, 992–998 (2006). doi: 10.1183/09031936.06.00133104
  24. Günther A., Mosavi P., Heinemann S., Ruppert C., Muth H., Markart P., Grimminger F., Walmrath D., Temmesfeld-Wollbrück B., and Seeger W. Alveolar fibrin formation caused by enhanced procoagulant and depressed fibrinolytic capacities in severe pneumonia: comparison with the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med., 161, 454–462 (2000). doi: 10.1164/ajrccm.161.2.9712038
  25. Petryayeva E., Algar W. R., Medintz I. L. Quantum dots in bioanalysis: A review of applications across various platforms for fluorescence spectroscopy and imaging. Appl. Spectrosc., 67, 215–252 (2013). doi: 10.1366/12-06948.
  26. Kato S., Itoh K., Yaoi T., Tozawa T., Yoshikawa Y., Yasui H., Kanamura N., Hoshino A., Manabe N., Yamamoto K., and Fushiki S. Organ distribution of quantum dots after intraperitoneal administration, with special reference to area-specific distribution in the brain. Nanotechnology, 21, 335103 (2010). doi: 10.1088/0957-4484/21/33/335103
  27. Feng X., Chen A., Zhang Y., Wang J., Shao L., and Wei L. Central nervous system toxicity of metallic nanoparticles. Int. J. Nanomed. 10, 4321–4340 (2015). doi: 10.2147/IJN.S78308
  28. Ming Y., Yun Z., Kedi X., Tao F., Haiyan Q., and Xiaoxiang Z. An in vitro study of vascular endothelial toxicity of CdTe quantum dots. Toxicology, 282, 94–103 (2011). doi: 10.1016/j.tox.2011.01.015
  29. Li W. and Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine (Lond.), 10, 299–320 (2015). doi: 10.2217/nnm.14.169
  30. Белогуров А. А., Бибилашвили Р. Ш., Горюнова Л. Е., Дельвер Е. П., Домкин В. Д., Ефимова Е. П., Рыбалкин И. Н., Савочкина Л. П., Сидоров М. А., Скамров А. В., Ченчик А. А., Шевелев А. В. и Южаков А. А. Рекомбинантная плазмидная ДНК pUABC, кодирующая модифицированный плазминогеновый активатор урокиназного типа, метод конструирования и штамм Escherichia coli, производящий модифицированный плазминогеновый активатор урокиназного типа. Рос. патент № 4797901 (1990).
  31. Гурский Я. Г., Минашкин М. М., Феоктистова Е. С., Скамров А. В., Скрыпина Н. А. и Бибилашвили Р. Ш. Экспрессия делеционного варианта плазминогена человека в Escherichia coli. Биотехнология, № 1, 25–31 (2010).
  32. Белогуров А. А, Бибилашвили Р. Ш. Гурский Я. Г, Минашкин М. М., Скамров А. В. Скрыпина Н. А. и Феоктистова Е. С. Рекомбинантный полипептид со свойствами плазминогена человека превращаться при активации в плазмин, который катализирует расщепление фибрина, фрагмент ДНК, кодирующий полипептид, рекомбинантная плазмиднай ДНК для экспрессии полипептида и трансформированная клетка Escherichia coli – продуцента полипептида. Патент RU 2432397 (2011).
  33. Gaffney P. J. Standardization of plasminogen assays. Haemostasis, 18 (Suppl. 1), 47–60 (1988). doi: 10.1159/000215837
  34. Gaffney P. J. and Mussett M. V. International collaborative study for the establishment of the second international reference preparation of plasmin. Thromb. Haemost., 50 (3), 645–649 (1983).
  35. Gaffney P. J and Curtis A. D. The establishment of a standard for plasminogen. Thromb. Haemost., 51, 376–378 (1984).
  36. Kebabian P. R. and Henkin J. A chromogenic enzymatic assay capable of detecting prourokinase-like activity material in plasma. Thromb. Res., 65 (3), 401–407 (1992). doi: 10.1016/0049-3848(92)90170-f
  37. Paar D. and Marhuln D. Spectrophotometric determination of urokinase in urine after gel filtration, using the chromogenic substrate S-2444. J. Clin. Chem. Clin. Biochem., 18 (9), 557–562 (1980). doi: 10.1515/cclm.1980.18.9.557
  38. Petrera N. S., Stafford A. R., Leslie B. A., Kretz C. A., Fredenburgh J. C., and Weitz J. I. Long range communication between exosites 1 and 2 modulates thrombin function. J. Biol. Chem., 284 (38), 25620–25629 (2009). doi: 10.1074/jbc.M109.000042
  39. Greenwood F. C., Hunter W. M., and Glover J. S. The preparation of 131I-labelled human growth hormone of high specific radioactivity. Biochem. J., 89, 114–123 (1963). doi: 10.1042/bj0890114
  40. Uhl B., Hirn S., Immler R., Mildner K., Möckl L., Sperandio M., Bräuchle C., Reichel C. A., Zeuschner D., and Krombach F. The Endothelial glycocalyx controls interactions of quantum dots with the endothelium and their translocation across the blood-tissue border. ACS Nano, 11 (2), 1498–1508 (2017). doi: 10.1021/acsnano.6b06812
  41. Möckl L., Hirn S., Torrano A. A., Uhl B., Bräuchle C., and Krombach F. The glycocalyx regulates the uptake of nanoparticles by human endothelial cells in vitro. Nanomedicine (Lond.), 12, 207–217 (2017). doi: 10.2217/nnm-2016-0332
  42. Rehberg M., Praetner M., Leite C. F., Reichel C. A., Bihari P., Mildner K., Duhr S., Zeuschner D., and Krombach F. Quantum dots modulate leukocyte adhesion and transmigration depending on their surface modification. Nano Lett., 10, 3656–3664 (2010). doi: 10.1021/nl102100m
  43. Praetner M., Rehberg M., Bihari P., Lerchenberger M., Uhl B., Holzer M., Eichhorn M. E., Fürst R., Perisic T., Reichel C. A., Welsch U., and Krombach F. The contribution of the capillary endothelium to blood clearance and tissue deposition of anionic quantum dots in vivo. Biomaterials, 31 (26), 6692–6700 (2010). doi: 10.1016/j.biomaterials.2010.05.051
  44. Khandoga A., Stoeger T., Khandoga A. G., Bihari P., Karg E., Ettehadieh D., Lakatos S., Fent J., Schulz H., and Krombach F. Platelet adhesion and fibrinogen deposition in murine microvessels upon inhalation of nanosized carbon particles. J. Thromb. Haemost., 8, 1632–1640 (2010). doi: 10.1111/j.1538-7836.2010.03904.x
  45. Rehberg M., Leite C. F., Mildner K., Horstkotte J., Zeuschner D., and Krombach F. Surface chemistry of quantum dots determines their behavior in postischemic tissue. ACS Nano, 6 (2), 1370–1379 (2012). doi: 10.1021/nn204187c
  46. Henderson L. J. Concerning the relationship between the strength of acids and their capacity to preserve neutrality. Am. J. Physiol., 21 (2), 173–179 (1908). Цитируется по: Moore D. S. Amino acid and peptide net charges: A simple calculational procedure. Henderson–Hasselbalch equation. Biochem. Education, 13, 10–11 (1985).
  47. Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., and Case D. A. Development and testing of a general amber force field. J. Comput. Chem., 25 (9), 1157–1174 (2004). doi: 10.1002/jcc.20035
  48. Humphrey W., Dalke A., and Schulten K. VMD – Visual molecular dynamics. J. Mol. Graphics, 14 (1), 33–38 (1996).
  49. Phillips J. C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R. D., Kalé L., and Schulten K. Scalable molecular dynamics with NAMD. J. Comput. Chem., 26 (16), 1781–1802 (2005). doi: 10.1002/jcc.20289
  50. Maksimenko A. V., Sakharova Y. S., and Beabealashvili R. S. Experimental and computational study of hyaluronidase interactions with glycosaminoglycans and their ligands. Curr. Mol. Med., 22 (8), 675–690 (2022). doi: 10.2174/1566524021666211018113204.
  51. Maksimenko A. V. and Bibilashvili R. S. Theoretical grounding and formation of experimental approaches to hyaluronidase structure consolidation due to its computational interactions with shortchain glycosaminoglycan ligands. Rus. J. Bioorg. Chem., 49 (2), 249–261 (2023). doi: 10.1134/S1068162023020164.
  52. Максименко А. В., Сахарова Ю. С. и Бибилашвили Р. Ш. Влияние гликозаминогликановых производных на функционирование гиалуронидазы. Теоретическое изучение взаимодействия биокатализатора с гликозаминогликановыми лигандами методами молекулярного докинга и молекулярной динамики. Кардиологич. вестн., 16 (4), 17–25 (2021). doi: 10.17116/Cardiobulletin20211604117.
  53. Kastrikina T. F., Taran L. D., and Kudinov S. A. Kinetic characteristics of fibrinogen and fibrin hydrolysis by plasmin 1 and 2 and miniplasmin. Thromb. Res., 41, 5, 681– 688 (1986).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences