Mitochondrial DNA Deletions in Peripheral Blood of Offspring of Workers Occupationally Exposed to Chronic Ionizing Radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Deletions in mitochondrial DNA are recognized factors in mitochondrial disorders and aging. The aim of this study was to investigate the prevalence of large-scale mtDNA deletions in peripheral blood samples of offspring whose parents, "Mayak" PA workers, were exposed to combined external γ- and internal α-radiation during the preconception period. Using long-extension PCR, deletions of 4977 bp and sizes ranging from 7436 to 8044 bp were detected. It was found that the prevalence of deletions in the studied groups of these offspring tended to increase, but no statistically significant differences were found compared to the control group.

About the authors

M. G Lomaeva

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

M. L Zakharova

Southern Urals Federal Research and Clinical Center for Medical Biophysics of the Federal Medical Biological Agency of Russian Federation

Ozyorsk, Russia

T. V Azizova

Southern Urals Federal Research and Clinical Center for Medical Biophysics of the Federal Medical Biological Agency of Russian Federation

Ozyorsk, Russia

V. N Antipova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: valery_a@rambler.ru
Pushchino, Russia

References

  1. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F., Schreier P. H., Smith A. J., Staden R., and Young I. G. Sequence and organization of the human mitochondrial genome. Nature, 290 (5806), 457–465 (1981). doi: 10.1038/290457a0
  2. Gupta R., Kanai M., Durham T. J., Tsuo K., McCoy J. G., Kotrys A. V., Zhou W., Chinnery P. F., Karczewski K. J., Calvo S. E., Neale B. M., and Mootha V. K. Nuclear genetic control of mtDNA copy number and heteroplasmy in humans. Nature, 620 (7975), 839–848 (2023). doi: 10.1038/s41586-023-06426-5
  3. Rusecka J., Kaliszewska M., Bartnik E., and Tońska K. Nuclear genes involved in mitochondrial diseases caused by instability of mitochondrial DNA. J. Appl. Genet., 59 (1), 43–57. (2018). doi: 10.1007/s13353-017-0424-3
  4. Rath S., Sharma R., Gupta R., Ast T., Chan C., Durham T. J., Goodman R. P., Grabarek Z., Haas M. E., Hung W. H. W., Joshi P. R., Jourdain A. A., Kim S. H., Kotrys A. V., Lam S. S., McCoy J. G., Meisel J. D., Miranda M., Panda A., Patgiri A., Rogers R., Sadre S., Shah H., Skinner O. S., To T. L., Walker M. A., Wang H., Ward P. S., Wengrod J., Yuan Ch. Ch., Calvo S. E., and Mootha V. K. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucl. Acids Res., 49 (D1), D1541– D1547 (2021). doi: 10.1093/nar/gkaa1011
  5. Gustafson M. A., Sullivan E. D., and Copeland W. C. Consequences of compromised mitochondrial genome integrity. DNA Repair (Amst.)., 93, 102916 (2020). doi: 10.1016/j.dnarep.2020.102916
  6. Zhao L. and Sumberaz P. Mitochondrial DNA damage: Prevalence, biological consequence, and emerging pathways. Chem. Res. Toxicol., 19 (33), 2491–2502 (2020). doi: 10.1021/acs.chemrestox.0c00083
  7. Pinto M. and Moraes C. T. Mechanisms linking mtDNA damage and aging. Free Radic. Biol. Med., 85, 250–258 (2015). doi: 10.1016/j.freeradbiomed.2015.05.005
  8. Schon E. A., DiMauro S., and Hirano M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nature Rev. Genetics, 13 (12), 878–890 (2012). doi: 10.1038/nrg3275
  9. Lujan S. A., Longley M. J., Humble M. H., Lavender C. A., Burkholder A., Blakely E. L., Alston C. L., Gorman G. S., Turnbull D. M., McFarland R., Taylor R. W., Kunkel T. A., and Copeland W. C. Ultrasensitive deletion detection links mitochondrial DNA replication, disease, and aging. Genome Biol., 21 (1), 248 (2020). doi: 10.1186/s13059-020-02138-5
  10. Lee Y., Kim T., Lee M., So S., Karagozlu M. Z., Seo G. H., Choi I. H., Lee P. C. W., Kim C. J., Kang E., and Lee B. H. De Novo development of mtDNA deletion due to decreased POLG and SSBP1 expression in humans. Genes (Basel), 12 (2), 284 (2021). doi: 10.3390/genes12020284.
  11. Безлепкин В. Г., Кириллова Е. Н., Захарова М. Л., Павлова О. С., Ломаева М. Г., Фоменко Л. А., Антипова В. Н. и Газиев А. И. Отдаленные и трансгенерационные молекулярно-генетические эффекты пролонгированного воздействия ионизирующей радиации у работников предприятия ядерной промышленности. Радиац. биология. Радиоэкология, 51 (1), 20–32 (2011).
  12. Кириллова Е. Н., Романов С. А., Лоффредо К. А., Захарова М. Л., Ревина В. С., Соколова С. Н., Герлиц Д. С., Зубкова О. В., Лукьянова Т. В., Урядницкая Т. И., Павлова О. С., Слукинова Ю. В., Колосова А. В. и Муксинова К. Н. Радиобиологический репозиторий тканей человека: успехи и перспективы в решении проблем радиационной безопасности и здоровья персонала и населения. Радиац. биология. Радиоэкология, 54 (6), 565–581 (2014).
  13. Малаxова Л. В., Ломаева М. Г., Заxаpова М. Л., Кириллова Е. Н., Соколова С. Н., Антипова В. Н. и Безлепкин В. Г. Делеции в митохондриальной ДНК периферической крови работников ПО «Маяк», подвергшихся пролонгированному воздействию сочетанного внешнего γи внутpеннего α–облучения. Биофизика, 61, 1236–1242 (2016).
  14. Zhang C., Baumer A., Maxwell R. J., Linnane A. W., and Nagley P. Multiple mitochondrial DNA deletions in an elderly human individual. FEBS Lett., 297 (1–2), 34–38 (1992). doi: 10.1016/0014-5793(92)80321-7
  15. Kogelnik A. M., Lott M. T., Brown M. D., Navathe S. B., and Wallace D. C. MITOMAP: a human mitochondrial genome database. Nucl. Acids Res., 24 (1), 177–179 (1996). doi: 10.1093/nar/24.1.177
  16. Liu V. W., Zhang C., and Nagley P. Mutations in mitochondrial DNA accumulate differentially in three different human tissues during ageing. Nucleic Acids Res., 26 (5), 1268–1275 (1998). doi: 10.1093/nar/26.5.1268.
  17. Yusoff A. A. M., Abdullah W. S. W., Khair S. Z. N. M., and Radzak S. M. A. A comprehensive overview of mitochondrial DNA 4977-bp deletion in cancer studies. Oncol. Rev., 13 (1), 409 (2019). doi: 10.4081/oncol.2019.409
  18. Wallace D. C. and Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol., 5, a021220 (2013). doi: 10.1101/cshperspect.a021220
  19. Payne B. A., Wilson I. J., Yu-Wai-Man P., Coxhead J., Deehan D., Horvath R., Taylor R. W., Samuels D. C., Santibanez-Koref M., and Chinnery P. F. Universal heteroplasmy of human mitochondrial DNA. Human Mol. Genetics, 22(2), 384–390 (2013). doi: 10.1093/hmg/dds435
  20. Gorman G. S., Chinnery P. F., DiMaur, S., Hirano M., Koga Y., McFarland R., Suomalainen A., Thorburn D. R., Zeviani M., and Turnbull D. M. Mitochondrial diseases. Nature Rev. Disease Primers, 2, 16080 (2016). doi: 10.1038/nrdp.2016.80
  21. Ferreira T. and Rodriguez S. Mitochondrial DNA: Inherent complexities relevant to genetic analyses. Genes (Basel). 15 (5), 617 (2024). doi: 10.3390/genes15050617
  22. Pitceathly R. D., Rahman S., and Hanna M. G. Single deletions in mitochondrial DNA-molecular mechanisms and disease phenotypes in clinical practice. Neuromusc. Disorders, 22 (7), 577–586 (2012). doi: 10.1016/j.nmd.2012.03.009
  23. Ng Y. S. and Turnbull D. M. Mitochondrial disease: genetics and management. J. Neurol., 263 (1), 179–191 (2016). doi: 10.1007/s00415-015-7884-3.
  24. Kauppila T. E. S., Kauppila J. H. K., and Larsson N. G. Mammalian mitochondria and aging: An update. Cell Metab., 25 (1), 57–71 (2017). doi: 10.1016/j.cmet.2016.09.017
  25. Tyynismaa H., Mjosund K. P., Wanrooij S., Lappalainen I., Ylikallio E., Jalanko A., Spelbrink J. N., Paetau A., and Suomalainen A. Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc. Natl. Acad. Sci. USA, 102 (49), 17687–17692 (2005). doi: 10.1073/pnas.0505551102
  26. Oliveira M. T. and Kaguni L. S. Reduced stimulation of recombinant DNA polymerase γ and mitochondrial DNA (mtDNA) helicase by variants of mitochondrial singlestranded DNA-binding protein (mtSSB) correlates with defects in mtDNA replication in animal cells. J. Biol. Chem., 286, 40649–40658 (2011). doi: 10.1074/jbc.M111.289983
  27. Wanrooij S., Luoma P., van Goethem G., van Broeckhoven C., Suomalainen A., and Spelbrink J. N. Twinkle and POLG defects enhance age-dependent accumulation of mutations in the control region of mtDNA. Nucl. Acids Res., 32 (10), 3053–3064 (2004). doi: 10.1093/nar/gkh634
  28. Copeland W. C. Defects of mitochondrial DNA replication. J. Child. Neurol., 29 (9), 1216–1224 (2014). doi: 10.1177/0883073814537380
  29. Wanrooij S., Goffart S., Pohjoismäki J. L., Yasukawa T., and Spelbrink J. N. Expression of catalytic mutants of the mtDNA helicase Twinkle and polymerase POLG causes distinct replication stalling phenotypes. Nucl. Acids Res., 35 (10), 3238–3251 (2007). doi: 10.1093/nar/gkm215
  30. Shoffner J. M., Lott M. T., Voljavec A. S., Soueidan S. A., Costigan D. A., and Wallace D. C. Spontaneous KearnsSayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc. Natl. Acad. Sci. USA, 86, 7952–7956 (1989). doi: 10.1073/pnas.86.20.7952
  31. Schon E. A., Rizzuto R., Moraes C. T., Nakase H., Zeviani M., and DiMauro S. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science, 244, 346–349 (1989). doi: 10.1126/science.2711184
  32. Persson Ö., Muthukumar Y., Basu S., Jenninger L., Uhler J. P., Berglund A. K., McFarland R., Taylor R. W., Gustafsson C. M., Larsson E., and Falkenberg M. Copychoice recombination during mitochondrial L-strand synthesis causes DNA deletions. Nat. Commun., 10, 759– 763 (2019). doi: 10.1038/s41467-019-08673-5
  33. Oliveira M. T., Pontes C. B., and Ciesielski G. L. Roles of the mitochondrial replisome in mitochondrial DNA deletion formation. Genet. Mol. Biol., 43 (Suppl. 1), e20190069 (2020). doi: 10.1590/1678-4685-gmb-2019-0069.
  34. Krishnan K. J., Reeve A. K., Samuels D. C., Chinnery P. F., Blackwood J. K., Taylor R. W., Wanrooij S., Spelbrink J. N., Lightowlers R. N. and Turnbull D. M. What causes mitochondrial DNA deletions in human cells? Nat. Genet., 40, 275–279 (2008). doi: 10.1038/ng.f.94
  35. Fontana G. A. and Gahlon H. L. Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucl. Acids Res., 48 (20), 11244–11258 (2020). doi: 10.1093/nar/gkaa804
  36. Shamanskiy V., Mikhailova A. A., Tretiakov E. O., Ushakova K., Mikhailova A. G., Oreshkov S., Knorre D. A., Ree N., Overdevest J. B., Lukowski S. W., Gostimskaya I., Yurov V., Liou C. W., Lin T. K., Kunz W. S., Reymond A., Mazunin I., Bazykin G. A., Fellay J., Tanaka M., and Popadin K. Secondary structure of the human mitochondrial genome affects formation of deletions. BMC Biol., 21 (1), 103 (2023). doi: 10.1186/s12915-023-01606-1
  37. Alston C. L., Rocha M. C., Lax N. Z., Turnbull D. M., and Taylor R. W. The genetics and pathology of mitochondrial disease. J. Pathol., 241 (2), 236–250 (2017). doi: 10.1002/path.4809
  38. Meissner C., Bruse P., Mohamed S. A., Schulz A., Warnk H., Storm T., and Oehmichen M. The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more? Exp. Gerontol., 43 (7), 645–652 (2008). doi: 10.1016/j.exger.2008.03.004
  39. Газиев А. И. пути сохранения целостности митохондриальной ДНК и функций митохондрий в клетках, подвергшихся воздействию ионизирующей радиации. Радиац. биология. Радиоэкология, 53 (2), 117–136 (2013). doi: 10.7868/S0869803113020045
  40. Kraytsberg Y., Kudryavtseva E., McKee A. C., Geula C., Kowall N. W., and Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet., 38 (5), 518–520 (2006). doi: 10.1038/ng1778
  41. Herbst A., Wanagat J., Cheema N., Widjaja K., McKenzie D., and Aiken J. M. Latent mitochondrial DNA deletion mutations drive muscle fiber loss at old age. Aging Cell, 15 (6), 1132–1139 (2016). doi: 10.1111/acel.12520
  42. Taylor S. D., Ericson N. G., Burton J. N., Prolla T. A., Silber J. R., Shendure J., and Bielas J. H. Targeted enrichment and high-resolution digital profiling of mitochondrial DNA deletions in human brain. Aging Cell, 13 (1), 29–38 (2014). doi: 10.1111/acel.12146
  43. Kazachkova N., Ramos A., Santos C., and Lima M. Mitochondrial DNA damage patterns and aging: revising the evidences for humans and mice. Aging Dis., 4 (6), 337–350 (2013). doi: 10.14336/AD.2013.0400337
  44. Moraes C. T., Atencio D. P., Oca-Cossio J., and Diaz F. Techniques and pitfalls in the detection of pathogenic mitochondrial DNA mutations. J. Mol. Diagnostics, 5 (4), 197–208 (2003). doi: 10.1016/S1525-1578(10)60474-6
  45. Котеров А. Н. История представлений о нестабильности генома при малых дозах радиации. Научная точка, вероятно, поставлена. Мед. радиология и радиацион. безопасность, 59 (1), 5–19 (2014).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences