Mitochondrial DNA Deletions in Peripheral Blood of Offspring of Workers Occupationally Exposed to Chronic Ionizing Radiation
- Authors: Lomaeva M.G1, Zakharova M.L2, Azizova T.V2, Antipova V.N1
-
Affiliations:
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- Southern Urals Federal Research and Clinical Center for Medical Biophysics of the Federal Medical Biological Agency of Russian Federation
- Issue: Vol 70, No 5 (2025)
- Pages: 969-975
- Section: Medical biophysics
- URL: https://cijournal.ru/0006-3029/article/view/695414
- DOI: https://doi.org/10.31857/S0006302925050132
- ID: 695414
Cite item
Abstract
Deletions in mitochondrial DNA are recognized factors in mitochondrial disorders and aging. The aim of this study was to investigate the prevalence of large-scale mtDNA deletions in peripheral blood samples of offspring whose parents, "Mayak" PA workers, were exposed to combined external γ- and internal α-radiation during the preconception period. Using long-extension PCR, deletions of 4977 bp and sizes ranging from 7436 to 8044 bp were detected. It was found that the prevalence of deletions in the studied groups of these offspring tended to increase, but no statistically significant differences were found compared to the control group.
About the authors
M. G Lomaeva
Institute of Theoretical and Experimental Biophysics, Russian Academy of SciencesPushchino, Russia
M. L Zakharova
Southern Urals Federal Research and Clinical Center for Medical Biophysics of the Federal Medical Biological Agency of Russian FederationOzyorsk, Russia
T. V Azizova
Southern Urals Federal Research and Clinical Center for Medical Biophysics of the Federal Medical Biological Agency of Russian FederationOzyorsk, Russia
V. N Antipova
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: valery_a@rambler.ru
Pushchino, Russia
References
- Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F., Schreier P. H., Smith A. J., Staden R., and Young I. G. Sequence and organization of the human mitochondrial genome. Nature, 290 (5806), 457–465 (1981). doi: 10.1038/290457a0
- Gupta R., Kanai M., Durham T. J., Tsuo K., McCoy J. G., Kotrys A. V., Zhou W., Chinnery P. F., Karczewski K. J., Calvo S. E., Neale B. M., and Mootha V. K. Nuclear genetic control of mtDNA copy number and heteroplasmy in humans. Nature, 620 (7975), 839–848 (2023). doi: 10.1038/s41586-023-06426-5
- Rusecka J., Kaliszewska M., Bartnik E., and Tońska K. Nuclear genes involved in mitochondrial diseases caused by instability of mitochondrial DNA. J. Appl. Genet., 59 (1), 43–57. (2018). doi: 10.1007/s13353-017-0424-3
- Rath S., Sharma R., Gupta R., Ast T., Chan C., Durham T. J., Goodman R. P., Grabarek Z., Haas M. E., Hung W. H. W., Joshi P. R., Jourdain A. A., Kim S. H., Kotrys A. V., Lam S. S., McCoy J. G., Meisel J. D., Miranda M., Panda A., Patgiri A., Rogers R., Sadre S., Shah H., Skinner O. S., To T. L., Walker M. A., Wang H., Ward P. S., Wengrod J., Yuan Ch. Ch., Calvo S. E., and Mootha V. K. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucl. Acids Res., 49 (D1), D1541– D1547 (2021). doi: 10.1093/nar/gkaa1011
- Gustafson M. A., Sullivan E. D., and Copeland W. C. Consequences of compromised mitochondrial genome integrity. DNA Repair (Amst.)., 93, 102916 (2020). doi: 10.1016/j.dnarep.2020.102916
- Zhao L. and Sumberaz P. Mitochondrial DNA damage: Prevalence, biological consequence, and emerging pathways. Chem. Res. Toxicol., 19 (33), 2491–2502 (2020). doi: 10.1021/acs.chemrestox.0c00083
- Pinto M. and Moraes C. T. Mechanisms linking mtDNA damage and aging. Free Radic. Biol. Med., 85, 250–258 (2015). doi: 10.1016/j.freeradbiomed.2015.05.005
- Schon E. A., DiMauro S., and Hirano M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nature Rev. Genetics, 13 (12), 878–890 (2012). doi: 10.1038/nrg3275
- Lujan S. A., Longley M. J., Humble M. H., Lavender C. A., Burkholder A., Blakely E. L., Alston C. L., Gorman G. S., Turnbull D. M., McFarland R., Taylor R. W., Kunkel T. A., and Copeland W. C. Ultrasensitive deletion detection links mitochondrial DNA replication, disease, and aging. Genome Biol., 21 (1), 248 (2020). doi: 10.1186/s13059-020-02138-5
- Lee Y., Kim T., Lee M., So S., Karagozlu M. Z., Seo G. H., Choi I. H., Lee P. C. W., Kim C. J., Kang E., and Lee B. H. De Novo development of mtDNA deletion due to decreased POLG and SSBP1 expression in humans. Genes (Basel), 12 (2), 284 (2021). doi: 10.3390/genes12020284.
- Безлепкин В. Г., Кириллова Е. Н., Захарова М. Л., Павлова О. С., Ломаева М. Г., Фоменко Л. А., Антипова В. Н. и Газиев А. И. Отдаленные и трансгенерационные молекулярно-генетические эффекты пролонгированного воздействия ионизирующей радиации у работников предприятия ядерной промышленности. Радиац. биология. Радиоэкология, 51 (1), 20–32 (2011).
- Кириллова Е. Н., Романов С. А., Лоффредо К. А., Захарова М. Л., Ревина В. С., Соколова С. Н., Герлиц Д. С., Зубкова О. В., Лукьянова Т. В., Урядницкая Т. И., Павлова О. С., Слукинова Ю. В., Колосова А. В. и Муксинова К. Н. Радиобиологический репозиторий тканей человека: успехи и перспективы в решении проблем радиационной безопасности и здоровья персонала и населения. Радиац. биология. Радиоэкология, 54 (6), 565–581 (2014).
- Малаxова Л. В., Ломаева М. Г., Заxаpова М. Л., Кириллова Е. Н., Соколова С. Н., Антипова В. Н. и Безлепкин В. Г. Делеции в митохондриальной ДНК периферической крови работников ПО «Маяк», подвергшихся пролонгированному воздействию сочетанного внешнего γи внутpеннего α–облучения. Биофизика, 61, 1236–1242 (2016).
- Zhang C., Baumer A., Maxwell R. J., Linnane A. W., and Nagley P. Multiple mitochondrial DNA deletions in an elderly human individual. FEBS Lett., 297 (1–2), 34–38 (1992). doi: 10.1016/0014-5793(92)80321-7
- Kogelnik A. M., Lott M. T., Brown M. D., Navathe S. B., and Wallace D. C. MITOMAP: a human mitochondrial genome database. Nucl. Acids Res., 24 (1), 177–179 (1996). doi: 10.1093/nar/24.1.177
- Liu V. W., Zhang C., and Nagley P. Mutations in mitochondrial DNA accumulate differentially in three different human tissues during ageing. Nucleic Acids Res., 26 (5), 1268–1275 (1998). doi: 10.1093/nar/26.5.1268.
- Yusoff A. A. M., Abdullah W. S. W., Khair S. Z. N. M., and Radzak S. M. A. A comprehensive overview of mitochondrial DNA 4977-bp deletion in cancer studies. Oncol. Rev., 13 (1), 409 (2019). doi: 10.4081/oncol.2019.409
- Wallace D. C. and Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol., 5, a021220 (2013). doi: 10.1101/cshperspect.a021220
- Payne B. A., Wilson I. J., Yu-Wai-Man P., Coxhead J., Deehan D., Horvath R., Taylor R. W., Samuels D. C., Santibanez-Koref M., and Chinnery P. F. Universal heteroplasmy of human mitochondrial DNA. Human Mol. Genetics, 22(2), 384–390 (2013). doi: 10.1093/hmg/dds435
- Gorman G. S., Chinnery P. F., DiMaur, S., Hirano M., Koga Y., McFarland R., Suomalainen A., Thorburn D. R., Zeviani M., and Turnbull D. M. Mitochondrial diseases. Nature Rev. Disease Primers, 2, 16080 (2016). doi: 10.1038/nrdp.2016.80
- Ferreira T. and Rodriguez S. Mitochondrial DNA: Inherent complexities relevant to genetic analyses. Genes (Basel). 15 (5), 617 (2024). doi: 10.3390/genes15050617
- Pitceathly R. D., Rahman S., and Hanna M. G. Single deletions in mitochondrial DNA-molecular mechanisms and disease phenotypes in clinical practice. Neuromusc. Disorders, 22 (7), 577–586 (2012). doi: 10.1016/j.nmd.2012.03.009
- Ng Y. S. and Turnbull D. M. Mitochondrial disease: genetics and management. J. Neurol., 263 (1), 179–191 (2016). doi: 10.1007/s00415-015-7884-3.
- Kauppila T. E. S., Kauppila J. H. K., and Larsson N. G. Mammalian mitochondria and aging: An update. Cell Metab., 25 (1), 57–71 (2017). doi: 10.1016/j.cmet.2016.09.017
- Tyynismaa H., Mjosund K. P., Wanrooij S., Lappalainen I., Ylikallio E., Jalanko A., Spelbrink J. N., Paetau A., and Suomalainen A. Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc. Natl. Acad. Sci. USA, 102 (49), 17687–17692 (2005). doi: 10.1073/pnas.0505551102
- Oliveira M. T. and Kaguni L. S. Reduced stimulation of recombinant DNA polymerase γ and mitochondrial DNA (mtDNA) helicase by variants of mitochondrial singlestranded DNA-binding protein (mtSSB) correlates with defects in mtDNA replication in animal cells. J. Biol. Chem., 286, 40649–40658 (2011). doi: 10.1074/jbc.M111.289983
- Wanrooij S., Luoma P., van Goethem G., van Broeckhoven C., Suomalainen A., and Spelbrink J. N. Twinkle and POLG defects enhance age-dependent accumulation of mutations in the control region of mtDNA. Nucl. Acids Res., 32 (10), 3053–3064 (2004). doi: 10.1093/nar/gkh634
- Copeland W. C. Defects of mitochondrial DNA replication. J. Child. Neurol., 29 (9), 1216–1224 (2014). doi: 10.1177/0883073814537380
- Wanrooij S., Goffart S., Pohjoismäki J. L., Yasukawa T., and Spelbrink J. N. Expression of catalytic mutants of the mtDNA helicase Twinkle and polymerase POLG causes distinct replication stalling phenotypes. Nucl. Acids Res., 35 (10), 3238–3251 (2007). doi: 10.1093/nar/gkm215
- Shoffner J. M., Lott M. T., Voljavec A. S., Soueidan S. A., Costigan D. A., and Wallace D. C. Spontaneous KearnsSayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc. Natl. Acad. Sci. USA, 86, 7952–7956 (1989). doi: 10.1073/pnas.86.20.7952
- Schon E. A., Rizzuto R., Moraes C. T., Nakase H., Zeviani M., and DiMauro S. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science, 244, 346–349 (1989). doi: 10.1126/science.2711184
- Persson Ö., Muthukumar Y., Basu S., Jenninger L., Uhler J. P., Berglund A. K., McFarland R., Taylor R. W., Gustafsson C. M., Larsson E., and Falkenberg M. Copychoice recombination during mitochondrial L-strand synthesis causes DNA deletions. Nat. Commun., 10, 759– 763 (2019). doi: 10.1038/s41467-019-08673-5
- Oliveira M. T., Pontes C. B., and Ciesielski G. L. Roles of the mitochondrial replisome in mitochondrial DNA deletion formation. Genet. Mol. Biol., 43 (Suppl. 1), e20190069 (2020). doi: 10.1590/1678-4685-gmb-2019-0069.
- Krishnan K. J., Reeve A. K., Samuels D. C., Chinnery P. F., Blackwood J. K., Taylor R. W., Wanrooij S., Spelbrink J. N., Lightowlers R. N. and Turnbull D. M. What causes mitochondrial DNA deletions in human cells? Nat. Genet., 40, 275–279 (2008). doi: 10.1038/ng.f.94
- Fontana G. A. and Gahlon H. L. Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucl. Acids Res., 48 (20), 11244–11258 (2020). doi: 10.1093/nar/gkaa804
- Shamanskiy V., Mikhailova A. A., Tretiakov E. O., Ushakova K., Mikhailova A. G., Oreshkov S., Knorre D. A., Ree N., Overdevest J. B., Lukowski S. W., Gostimskaya I., Yurov V., Liou C. W., Lin T. K., Kunz W. S., Reymond A., Mazunin I., Bazykin G. A., Fellay J., Tanaka M., and Popadin K. Secondary structure of the human mitochondrial genome affects formation of deletions. BMC Biol., 21 (1), 103 (2023). doi: 10.1186/s12915-023-01606-1
- Alston C. L., Rocha M. C., Lax N. Z., Turnbull D. M., and Taylor R. W. The genetics and pathology of mitochondrial disease. J. Pathol., 241 (2), 236–250 (2017). doi: 10.1002/path.4809
- Meissner C., Bruse P., Mohamed S. A., Schulz A., Warnk H., Storm T., and Oehmichen M. The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more? Exp. Gerontol., 43 (7), 645–652 (2008). doi: 10.1016/j.exger.2008.03.004
- Газиев А. И. пути сохранения целостности митохондриальной ДНК и функций митохондрий в клетках, подвергшихся воздействию ионизирующей радиации. Радиац. биология. Радиоэкология, 53 (2), 117–136 (2013). doi: 10.7868/S0869803113020045
- Kraytsberg Y., Kudryavtseva E., McKee A. C., Geula C., Kowall N. W., and Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet., 38 (5), 518–520 (2006). doi: 10.1038/ng1778
- Herbst A., Wanagat J., Cheema N., Widjaja K., McKenzie D., and Aiken J. M. Latent mitochondrial DNA deletion mutations drive muscle fiber loss at old age. Aging Cell, 15 (6), 1132–1139 (2016). doi: 10.1111/acel.12520
- Taylor S. D., Ericson N. G., Burton J. N., Prolla T. A., Silber J. R., Shendure J., and Bielas J. H. Targeted enrichment and high-resolution digital profiling of mitochondrial DNA deletions in human brain. Aging Cell, 13 (1), 29–38 (2014). doi: 10.1111/acel.12146
- Kazachkova N., Ramos A., Santos C., and Lima M. Mitochondrial DNA damage patterns and aging: revising the evidences for humans and mice. Aging Dis., 4 (6), 337–350 (2013). doi: 10.14336/AD.2013.0400337
- Moraes C. T., Atencio D. P., Oca-Cossio J., and Diaz F. Techniques and pitfalls in the detection of pathogenic mitochondrial DNA mutations. J. Mol. Diagnostics, 5 (4), 197–208 (2003). doi: 10.1016/S1525-1578(10)60474-6
- Котеров А. Н. История представлений о нестабильности генома при малых дозах радиации. Научная точка, вероятно, поставлена. Мед. радиология и радиацион. безопасность, 59 (1), 5–19 (2014).
Supplementary files




