Effect of Antiorthostatic Suspension on Sperm Parameters of Mus musculus Mice

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The effect of 30-day antiorthostatic hanging of male Mus musculus mice on spermogram parameters, including the use of essential phospholipids, was studied. The concentration and motility of spermatozoa were measured, the fertilizing ability, the content of cholesterol, calcium ions and cytoskeletal proteins in spermatozoa were assessed. To assess the specificity of changes in spermatozoa, the content of cholesterol and cytoskeletal proteins was determined using buccal epithelial cells. It was shown that anti-orthostatic hanging led to a decrease in the proportion of fertilized oocytes and the absence of 2–4-cell embryos, but the use of essential phospholipids prevented these changes. The observed increase in the cholesterol content in spermatozoa, which is non-specific due to similar changes in buccal epithelial cells, in response to anti-orthostatic hanging, as well as the accumulation of calcium ions, could change the effectiveness of capacitation and cause a decrease in fertilizing capacity, which requires further research.

About the authors

K. K Gogichaeva

State Scientific Center of the Russian Federation Institute of Biomedical Problems, Russian Academy of Sciences

Email: xenitaggichaeva@gmail.com
Moscow, Russia

R. V Serebryakova

State Scientific Center of the Russian Federation Institute of Biomedical Problems, Russian Academy of Sciences

Moscow, Russia

D. I Fomina

State Scientific Center of the Russian Federation Institute of Biomedical Problems, Russian Academy of Sciences

Moscow, Russia

Yu. S Zhdankina

State Scientific Center of the Russian Federation Institute of Biomedical Problems, Russian Academy of Sciences; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Moscow, Russia; Moscow, Russia

N. S Biryukov

State Scientific Center of the Russian Federation Institute of Biomedical Problems, Russian Academy of Sciences; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Moscow, Russia; Moscow, Russia

O. V Kotov

State Scientific Center of the Russian Federation Institute of Biomedical Problems, Russian Academy of Sciences

Moscow, Russia

I. V Ogneva

State Scientific Center of the Russian Federation Institute of Biomedical Problems, Russian Academy of Sciences; I.M. Sechenov First Moscow State Medical University (Sechenov University); Yuri Gagarin Scientific Research and Testing Cosmonaut Training Center

Moscow, Russia; Moscow, Russia; Zvezdny Gorodok, Russia

References

  1. Forghani P., Liu W., Wang Z., Ling Z., Takaesu F., Yang E., Tharp G. K., Nielsen S., Doraisingam S., Countryman S., Davis M. E., Wu R., Jia S., and Xu C. Spaceflight alters protein levels and gene expression associated with stress response and metabolic characteristics in human cardiac spheroids. Biomaterials, 317, 123080 (2025). doi: 10.1016/j.biomaterials.2024.123080
  2. Bélanger Nzakimuena C., Masís Solano M., Marcotte-Collard R., Lesk M. R., and Costantino S. Spatial and temporal changes in choroid morphology associated with long-duration spaceflight. Invest. Ophthalmol. Vis. Sci., 66 (5), 17 (2025). doi: 10.1167/iovs.66.5.17
  3. Wuyts F. L., Deblieck C., Vandevoorde C., and Durante M. Brains in space: impact of microgravity and cosmic radiation on the CNS during space exploration. Nat. Rev. Neurosci., 26 (6), 354–371 (2025). doi: 10.1038/s41583-025-00923-4
  4. Kamiya H., Sasaki S., Ikeuchi T., Umemoto Y., Tatsura H., Hayashi Y., Kaneko S., and Kohri K. Effect of simulated microgravity on testosterone and sperm motility in mice. J. Androl., 24 (6), 885–890 (2003). doi: 10.1002/j.1939-4640.2003.tb03140.x
  5. Karim A., Qaisar R., Azeem M., Jose J., Ramachandran G., Ibrahim Z. M., Elmoselhi A., Ahmad F., Abdel-Rahman W. M., and Ranade A.V. Hindlimb unloading induces time-dependent disruption of testicular histology in mice. Sci. Rep., 12 (1), 17406 (2022). doi: 10.1038/s41598-022-22385-9
  6. Серова Л. В., Денисова Л. А., Апанасенко З. И., Кузнецова М. А. и Мейзеров Е. С. Репродуктивная функция крыс-самцов после полета на биоспутнике «Космос-1129». Космическая биология и авиакосмическая медицина, 16 (5), 62–65 (1982).
  7. Серова Л. В. Влияние невесомости на репродуктивную систему млекопитающих. Космическая биология и авиакосмическая медицина, 23 (2), 11–16 (1989).
  8. Ogneva I. V., Zhdankina Y. S., Gogichaeva K. K., Malkov A. A., and Biryukov N. S. The motility of mouse spermatozoa changes differentially after 30-minute exposure under simulating weightlessness and hypergravity. Int. J. Mol. Sci., 25 (24), 13561 (2024). doi: 10.3390/ijms252413561
  9. Ogneva I. V., Usik M. A., Biryukov N. S., and Zhdankina Y. S. Sperm motility of mice under simulated microgravity and hypergravity. Int. J. Mol. Sci., 21 (14), (2020). doi: 10.3390/ijms21145054
  10. Khongkha T., Rattanadechakul A., Surinlert P., Thongsum O., Boonkua S., Kongmanas K., Somrit M., Weerachatyanukul W., and Asuvapongpatana S. Role of lipid binding protein, Niemann pick type C-2, in enhancing shrimp sperm physiological function. Heliyon, 11 (1), e41341 (2024). doi: 10.1016/j.heliyon.2024.e41341
  11. Gogichaeva K. K. and Ogneva I. V. Administration of essential phospholipids prevents Drosophila melanogaster oocytes from responding to change in gravity. Cells, 13 (18), 1593 (2024). doi: 10.3390/cells13181593
  12. Usik M. A. and Ogneva I. V. Cytoskeleton structure in mouse sperm and testes after 30 days of hindlimb unloading and 12 hours of recovery. Cell Physiol. Biochem., 51 (1), 375–392, (2018). doi: 10.1159/000495235
  13. Morey-Holton E., Globus R. K., Kaplansky A., and Durnova G. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. Adv. Space Biol. Med., 10, 7–40 (2005). doi: 10.1016/s1569-2574(05)10002-1
  14. Sventitskaya M. A. and Ogneva I. V. Reorganization of the mouse oocyte’ cytoskeleton after cultivation under simulated weightlessness. Life Sci. Space Res. (Amst)., 40, 8–18 (2024). doi: 10.1016/j.lssr.2023.11.001
  15. Morey-Holton E. R. and Globus R. K. Hindlimb unloading rodent model: technical aspects. J. Appl. Physiol. (1985), 92 (4), 1367–1377 (2002). doi: 10.1152/japplphysiol.00969.2001
  16. Huang L., Meng T. G., Ma X. S., Wang Z. B., Qi S. T., Chen Q., Zhang Q. H., Liang Q. X., Wang Z. W., Hu M. W., Guo L., Ouyang Y. C., Hou Y., Zhao Y., and Sun Q. Y. Rad9a is involved in chromatin decondensation and post-zygotic embryo development in mice. Cell Death Differ., 26 (5), 969–980 (2019). doi: 10.1038/s41418-018-0181-9
  17. Xiong Y., Ma C., Li Q., Zhang W., Zhao H., Ren P., Zhang K., and Lei X. Melatonin ameliorates simulated-microgravity-induced mitochondrial dysfunction and lipid metabolism dysregulation in hepatocytes. FASEB J., 37 (9), e23132 (2023). doi: 10.1096/fj.202301137R
  18. Маркин А. А., Журавлева О. А., Кузичкин Д. С., Вострикова Л. В., Заболотская И. В., Томиловская Е. С., Логинов В. И. и Степанова Г. П. Исследование метаболических реакций у испытуемых в динамике 21-суточной «сухой» иммерсии. Авиакосмическая и экологическая медицина, 54 (4), 88–92 (2020). doi: 10.21687/0233-528X-2020-54-4-88-92
  19. Chubinskiy-Nadezhdin V. I., Negulyaev Y. A., and Morachevskaya E. A. Cholesterol depletion-induced inhibition of stretch-activated channels is mediated via actin rearrangement. Biochem. Biophys. Res. Commun., 412 (1), 80–85 (2011). doi: 10.1016/j.bbrc.2011.07.046
  20. Morachevskaya E., Sudarikova A., and Negulyaev Y. Mechanosensitive channel activity and F-actin organization in cholesterol-depleted human leukaemia cells. Cell Biol. Int., 31 (4), 374–381 (2007). doi: 10.1016/j.cellbi.2007.01.024
  21. Lopez C. I., Pelletán L. E., Suhaiman L., De Blas G. A., Vitale N., Mayorga L. S., and Belmonte S. A. Diacylglycerol stimulates acrosomal exocytosis by feeding into a PKCand PLD1-dependent positive loop that continuously supplies phosphatidylinositol 4,5-bisphosphate. Biochim. Biophys. Acta, 1821 (9), 1186–1199 (2012). doi: 10.1016/j.bbalip.2012.05.001

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences