Protein Adsorption on Polymeric Nanoparticles: Impact of Polyvinyl Alcohol

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The protein corona has a significant impact on the biodistribution, pharmacokinetics and therapeutic functionality of nanosystems, which determines the need for an in-depth study of the factors influencing its formation. The auxiliary substances included in the nanoparticles, in particular polyvinyl alcohol, can affect their physico-chemical properties, thereby affecting the formation of a protein corona. In this work, nanoparticles based on a copolymer of lactic and glycolic acids loaded with paclitaxel were synthesized by single emulsification using various concentrations of polyvinyl alcohol. The obtained nanoparticles were characterized by dynamic and electrophoretic light scattering methods. The adsorption models of Langmuir, Freundlich, Langmuir-Freundlich, and Brunauer, Emmett and Teller were used to describe the process of protein adsorption on the surface of nanoparticles. The obtained data indicate that the concentration of adsorbed proteins decreases when the residual polyvinyl alcohol concentration on the particle surface is increased. The revealed relationship will allow optimizing the design of nanosystems based on a copolymer of lactic and glycolic acids in order to increase the effectiveness of therapy.

About the authors

O. E Kamaeva

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

M. B Sokol

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

I. A Gulyaev

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

M. A Klimenko

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

N. G Yabbarov

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

M. R Mollaeva

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

M. V Chirkina

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Moscow, Russia

S. A Brezgin

E.I. Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University; Center for Precision Genetic Technologies for Medicine of the V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia; Moscow, Russia

S. L Kuznetsov

Kurchatov Complex of Nano-, Bio-, Info-, Cognitive and Social-Humanities Sciences and Nature-Like Technologies, National Research Center "Kurchatov Institute"

Moscow, Russia

E. D Nikolskaya

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: elenanikolskaja@gmail.com
Moscow, Russia

References

  1. Berrecoso G., Crecente-Campo J., and Alonso M. J. Unveiling the pitfalls of the protein corona of polymeric drug nanocarriers. Drug Deliv. and Transl. Res., 10, 730–750 (2020). doi: 10.1007/s13346-020-00745-0
  2. Bai X., Wang J., Mu Q., and Su G. In vivo protein corona formation: characterizations, effects on engineered nanoparticles’ biobehaviors, and applications. Front. Bioeng. Biotechnol., 9, 646708 (2021). doi: 10.3389/fbioe.2021.646708
  3. Lins A., Keuter L., Mulac D., Humpf H. U., and Langer K. Are stabilizers, located on the surface of PLGA nanoparticles, able to modify the protein adsorption pattern? Int. J. Pharm., 674, 125488 (2025). doi: 10.1016/j.ijpharm.2025.125488
  4. Mayordomo N. M., Zatarain-Beraza A., Valerio F., Álvarez-Méndez V., Turegano P., Herranz-García L., López de Aguileta A., Cattani N., Álvarez-Alonso A., and Fanarraga M. L. The protein corona paradox: Challenges in achieving true biomimetics in nanomedicines. Biomimetics, 10, 276 (2025). doi: 10.3390/biomimetics10050276
  5. González-García L. E., MacGregor M. N., Visalakshan R. M., Lazarian A., Cavallaro A. A., Morsbach S., Mierczynska-Vasilev A., Mailänder V., Landfester K., and Vasilev K. Nanoparticles surface chemistry influence on protein corona composition and inflammatory responses. Nanomaterials, 12 (4), 682 (2022). doi: 10.3390/nano12040682
  6. Treuel L. and Nienhaus G. U. Toward a molecular understanding of nanoparticle-protein interactions. Biophys. Rev., 4 (2), 137–147 (2012). doi: 10.1007/s12551-012-0072-0
  7. Sokol M. B., Nikolskaya E. D., Yabbarov N. G., Zenin V. A., Faustova M. R., Belov A. V., Zhunina O. A., Mollaev M. D., Zabolotsky A. I., Tereshchenko O. G., and Severin E. S. Development of novel PLGA nanoparticles with co-encapsulation of docetaxel and abiraterone acetate for a highly efficient delivery into tumor cells. J. Biomed. Mater. Res. B. Appl. Biomater., 107 (4), 1150–1158 (2019). doi: 10.1002/jbm.b.34208
  8. Сокол М. Б., Сычева Ю. В., Яббаров Н. Г., Заболотский А. И., Моллаев М. Д., Фаустова М. Р., Терещенко О. Г., Фомичева М. В. и Никольская Е. Д. Валидация методики количественного определения паклитаксела в составе адресной системы доставки на основе наночастиц сополимера молочной и гликолевой кислот методом УФ-спектрометрии. Хим.-фармацевт. журн., 54 (8), 47–51 (2020). doi: 10.30906/0023-1134-2020-54-8-47-51
  9. Sahoo S. K., Panyam J., Prabha S., and Labhasetwar V. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J. Control. Release, 82 (1), 105–114 (2002). doi: 10.1016/s0168-3659(02)00127-x
  10. Hewson B. C. Using the thermo scientific Matrix® PlateMate® 2x2 to automate the BCA protein assay. Technical Note: 07007 (Thermo Fisher Scientific, Hudson, USA, 2008).
  11. Сокол М. Б., Яббаров Н. Г., Моллаева М. Р., Фомичева М. В., Балабаньян В. Ю. и Никольская Е. Д. Стандартизация наноразмерной формы паклитаксела в составе конъюгата полимерных наночастиц с белковой векторной молекулой. Вопр. биол., мед. и фармацевт. химии, 24 (7), 18–23 (2021). doi: 10.29296/25877313-2021-07-03
  12. Sokol M. B., Yabbarov N. G., Mollaeva M. R., Chirkina M. V., Mollaev M. D., Zabolotsky A. I., Kuznetsov S. L., and Nikolskaya E. D. Alpha-fetoprotein mediated targeting of polymeric nanoparticles to treat solid tumors. Nanomedicine, 17 (18), 1217–1235 (2022). doi: 10.2217/nnm-2022-0097
  13. Nikolskaya E. D., Zhunina O. A., Yabbarov N. G., Tereshchenko O. G., Godovannyy A. V., Gukasova N. V., and Severin E. S. The docetaxel polymeric form and its antitumor activity. Rus. J. Bioorg. Chem., 43 (3), 278–285 (2017). doi: 10.1134/S1068162017030116
  14. Göppert T. M. and Müller R. H. Protein adsorption patterns on poloxamerand poloxamine-stabilized solid lipid nanoparticles (SLN). Eur. J. Pharm. Biopharm., 60 (3), 361–372 (2005). doi: 10.1016/j.ejpb.2005.02.006
  15. Sempf K., Arrey T., Gelperina S., Schorge T., Meyer B., Karas M., and Kreuter J. Adsorption of plasma proteins on uncoated PLGA nanoparticles. Eur. J. Pharm. Biopharm., 85 (1), 53–60 (2013). doi: 10.1016/j.ejpb.2012.11.030
  16. Tenzer S., Docter D., Kuharev J., Musyanovych A., Fetz V., Hecht R., Schlenk F., Fischer D., Kiouptsi K., Reinhardt C., Landfester K., Schild H., Maskos M., Knauer S. K., and Stauber R. H. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol., 8 (10), 772–781 (2013). doi: 10.1038/nnano.2013.181
  17. Spreen H., Behrens M., Mulac D., Humpf H. U., and Langer K. Identification of main influencing factors on the protein corona composition of PLGA and PLA nanoparticles. Eur. J. Pharm. Biopharm., 163, 212–222 (2021). doi: 10.1016/j.ejpb.2021.04.006
  18. Giorgi E. D., Genovés S., Díaz M., Municoy S., Desimone M. F., and Marzi M. C. Adsorption of immunomodulatory proteins over silica nanoparticles and the in vitro effect. Mater. Adv., 5, 777–787 (2024). doi: 10.1039/D3MA00776F
  19. Abu-Alsoud G. F., Hawboldt K. A., and Bottaro C. S. Comparison of Four Adsorption Isotherm Models for Characterizing Molecular Recognition of Individual Phenolic Compounds in Porous Tailor-Made Molecularly Imprinted Polymer Films. ACS Appl. Mater. Interfaces, 12 (10), 11998–12009 (2020). doi: 10.1021/acsami.9b21493
  20. Slyusarenko N., Gerasimova M., Atamanova M., Plotnikov A., and Slyusareva E. Adsorption of eosin Y on polyelectrolyte complexes based on chitosan and arabinogalactan sulfate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610, 125731 (2021). doi: 10.1016/j.colsurfa.2020.125731
  21. Walkey C. D. and Chan W. C. W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev., 41 (7), 2780–2799 (2012). doi: 10.1039/C1CS15233E
  22. Milani S., Bombelli F. B., Pitek A. S., Dawson K. A., and Rädler J. Reversible versus Irreversible Binding of Transferrin to Polystyrene Nanoparticles: Soft and Hard Corona. ACS Nano, 6 (3), 2532–2541 (2012). doi: 10.1021/nn204951s
  23. Mohsen-Nia M., Massah B. M., Behrashi M., and Mohsen N. A. Human serum protein adsorption onto synthesis nano-hydroxyapatite. Protein J., 31 (2), 150–157 (2012). doi: 10.1007/s10930-011-9384-3
  24. Sakulkhu U., Mahmoudi M., Maurizi L., Coullerez G., Hofmann-Amtenbrink M., Vries M., Motazacker M., Rezaeee F., and Hofmann H. Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona. Biomater. Sci., 3 (2), 265–278 (2015). doi: 10.1039/C4BM00264D
  25. Vaishanav S. K., Chandraker K., Korram J., Nagwanshi R., Ghosh K. K., and Satnami M. L. Protein nanoparticle interaction: A spectrophotometric approach for adsorption kinetics and binding studies. J. Mol. Struct., 1117, 300–310 (2016). doi: 10.1016/j.molstruc.2016.03.087
  26. Quiroga E., Centres P. M., Ochoa N. A., Ramirez-Pastor A. J. Fractional statistical theory of adsorption applied to protein adsorption. J. Colloid Interface Sci., 390 (1), 183–188 (2013). doi: 10.1016/j.jcis.2012.09.054
  27. Al-Anber M. A. Adsorption of ferric ions onto natural feldspar: kinetic modeling and adsorption isotherm. Int. J. Environ. Sci. Technol., 12 (1), 139–150 (2015). doi: 10.1007/s13762-013-0410-1

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences