Investigation of the Interactions of Methyl-β-Cyclodextrin and Amphotericin B with Erythrocyte Membrane Components by Molecular Docking

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The aim of this work was to analyze the interactions of methyl-β-cyclodextrin and amphotericin B (AmB) with spectrin, actin, and hemoglobin by the method of molecular docking. The protein structures were taken from PDB. The full-atom models of proteins were "cleaned" from water molecules and buffer components, surface charge arrangement was performed, and cells were selected for "blind" docking. The structural formula of methyl-β-cyclodextrin and amphotericin B were taken from PubChem and converted to HyperChem. Geometry optimization was performed using the MM+ model potential, rigid/fixed structures were optimized using the semi-empirical quantum chemical method PM3. The protein-ligand complex interactions were described using PLIP. The total binding energy for all complexes ranged from –4.4 to –10.3 kcal/mol. The complexes were formed due to hydrogen, van der Waals bonds, and salt bridges. Visualization of the most energetically advantageous positions confirmed that both amphotericin B and methyl-β-cyclodextrin localized in the central cavities of hemoglobin and actin, and in the distal sites of α- and β-subunits of spectrin. Amphotericin B formed more stable complexes with each of the proteins: the strength of hydrogen bonds and the number of hydrophobic contacts with the proteins were higher than for complexes with methyl-β-cyclodextrin.

About the authors

L. O Sokolova

Voronezh State University

Email: lyudmila.sokolova.94@mail.ru
Voronezh, Russia

M. S Kondratyev

Voronezh State University; Institute of Cell Biophysics, Russian Academy of Sciences

Voronezh, Russia; Pushchino, Russia

E. A Kalaeva

Voronezh State University

Voronezh, Russia

V. G Artyukhov

Voronezh State University

Voronezh, Russia

M. A Nakvasina

Voronezh State University

Voronezh, Russia

References

  1. Ross M.H. and Wojciech P. Histology: Text and Atlas, 8th ed. (Lippincott Williams & Wilkins, Lond., 2019). doi: 10.26641/1997-9665.2019.4.76-89
  2. Khary K. and Howard J. Minimum-energy vesicle and cell shapes calculated using spherical harmonics parameterization. Soft Matter, 7 (5), 2138–2143 (2011). doi: 10.1039/c0sm01193b
  3. Narla J., and Mohandas N. Red cell membrane disorders. International journal of laboratory hematology, 39, 47–52 (2017). doi: 10.1111/ijlh.12657
  4. Артюхов В. Г., Башарина О. В., Вашанов Г. А., Калаева Е.А., Лавриненко И. А., Наквасина М. А., Путинцева О. В., Радченко М. С. и Резван С. Г. Практикум по биофизике (ВГУ, Воронеж, 2016).
  5. Oore-ofe O., Soma P., Buys A. V., Debusho L. K., and Pretorius E. Characterizing pathology in erythrocytes using morphological and biophysical membrane properties: Relation to impaired hemorheology and cardiovascular function in rheumatoid arthritis. Biochim. Biophys. Acta Biomembranes, 1859 (12), 2381–2391 (2017). doi: 10.1016/j.bbamem.2017.09.014
  6. Калаева Е. А., Соколова Л. О., Литвинов Н. В., Артюхов В. Г. и Путинцева О. В. Изменения спектральных характеристик внутриэритроцитарного гемоглобина крови человека, индуцированные метил-β-циклодекстрином. Вестн. Воронежского гос. ун-та. Серия: Химия. Биология. Фармация, 2, 91–96 (2023).
  7. Садчиков Д. В. и Хоженко А. О. Взаимосвязь межклеточных соотношений форменных элементов и кислородтранспортной функции крови у больных с постгеморрагической анемией. Фундаментальные исследования, 4 (2), 356–360 (2012).
  8. Kim H., Han J., and Park J. H. Cyclodextrin polymer improves atherosclerosis therapy and reduces ototoxicity. J. Control. Release, 319, 77–86 (2020). doi: 10.1016/j.jconrel.2019.12.021
  9. Coisne C., Tilloy S., Monflier E., Wils D., Fenart L., and Gosselet F. Cyclodextrins as emerging therapeutic tools in the treatment of cholesterol-associated vascular and neurodegenerative diseases. Molecules, 21 (12), 1–22 (2016). doi: 10.3390/molecules21121748
  10. Onodera R., Motoyama K., Okamatsu A., Higashi T., and Arima H. Potential use of folate-appended methyl-β-cyclodextrin as an anticancer agent. Sci. Rep., 3, 1104 (2013). doi: 10.1038/srep01104
  11. Róka E., Ujhelyi Z., Deli M., Bocsik A., Fenyvesi É., Szente L., Fenyvesi F., Vecsernyés M., Váradi J., Fehér P., Gesztelyi R., Félix C., Perret F., and Bácskay I. K. Evaluation of the cytotoxicity of α-cyclodextrin derivatives on the Caco-2 cell line and human erythrocytes. Molecules, 20 (11), 20269–20285 (2015). doi: 10.3390/molecules201119694
  12. Соколова Л. О., Калаева Е. А., Артюхов В. Г. и Путинцева О. В. Использование флуоресцентных методов анализа для изучения взаимодействия амфотерицина В с холестерином лимфоцитов крови человека. Вестн. новых мед. технологий, 18 (3), 105–109 (2024). doi: 10.24412/2075-4094-2024-3-3-5
  13. Borzyszkowska-Bukowska J., Czub J., Szczeblewski P., and Laskowski T. Antibiotic-sterol interactions provide insight into the selectivity of natural aromatic analogues of amphotericin B and their photoisomers. Sci. Rep., 13 (1), 762–777 (2023). doi: 10.1038/s41598-023-28036-x
  14. Kalaeva E. A., Sokolova L. O., Artyukhov V. G., Nakvasina M. A., and Putintseva O. V. Amphotericin B as a cholesterol identifier in human erythrocyte's membrane. Opera Med. Physiol., 9 (1), 42–48 (2022). doi: 10.24412/2500-2295-2022-1-42-48
  15. Pashazade T. D. and Kasumov K. M. The properties of ion channels formed in bilayer lipid membranes by amphotericin and n-methyl derivative of amphotericin under their action on one side. Biophysics, 66 (3), 428–433 (2021). doi: 10.31857/S000630292103011X
  16. Багирова А. А. и Касумов Х. М. Антигрибковый макроциклический антибиотик амфотерицин В — настоящее и будущее. Многопрофильная перспектива использования в практической медицине. Биомед. химия, 67 (4), 311–322 (2021). doi: 10.18097/PBMC20216704311
  17. Trott O. and Olson A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 31 (2), 455–461 (2010). doi: 10.1002/jcc.21334
  18. Ogungbe I. V., Erwin W. R., Setzer W. N. Antileishmanial phytochemical phenolics: molecular docking to potential protein targets. J. Mol. Graphics Model., 48, 105–117 (2014). doi: 10.1016/j.jmgm.2013.12.010
  19. Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin: DNase I complex. Nature, 347, 37–44 (1990). doi: 10.1038/347037a0
  20. Yan Y., Winograd E., Viel A., Cronin T., Harrison S. C., and Branton D. Crystal structure of the repetitive segments of spectrin. Science, 262, 2027–2030 (1993). doi: 10.1126/science.8266097
  21. Waller D. A. and Liddington R. C. Refinement of a partially oxygenated T state human haemoglobin at 1.5 Å resolution. Acta Cryst., B46, 409–418 (1990). doi: 10.1107/S0108768190000313
  22. Финкельштейн А. В. и Птицын О. Б. Физика белка: курс лекций (КДУ, М., 2012).
  23. Калаева Е. А. и Артюхов В. Г. Биофизические аспекты строения, функционирования и регуляции активности ферментов: учебник (ВГУ, Воронеж, 2019).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences