Синтез ZnGa2Se4 взаимодействием GaI3 и ZnI2 с селеном

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Проведено термодинамическое моделирование систем GaI3–Se и ZnI2–Se методом констант равновесия в температурном интервале 200–500°С. Показано, что равновесная степень превращения йодидов в Ga2Se3 и ZnSe составляет 21 и 0.7٪ соответственно. Основным компонентом паровой фазы в обеих системах является молекулярный йод. Разработан способ получения Ga2Se3, ZnSe, ZnGa2Se4 взаимодействием GaI3 и ZnI2 с селеном в вакуумированном кварцевом реакторе с двумя температурными зонами. Селективное выведение йода из реакционного расплава позволило достичь практического выхода селенидов на уровне 86–90٪ при температуре 450°С. Остаточное содержание йода в полученных соединениях составило 0.2–1 ат.%.

Texto integral

Acesso é fechado

Sobre autores

А. Вельмужов

Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук

Autor responsável pela correspondência
Email: velmuzhov.ichps@mail.ru
Rússia, ГСП-75, ул. Тропинина, 49, Нижний Новгород

Е. Тюрина

Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук

Email: velmuzhov.ichps@mail.ru
Rússia, ГСП-75, ул. Тропинина, 49, Нижний Новгород

М. Суханов

Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук

Email: velmuzhov.ichps@mail.ru
Rússia, ГСП-75, ул. Тропинина, 49, Нижний Новгород

А. Сучков

Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук

Email: velmuzhov.ichps@mail.ru
Rússia, ГСП-75, ул. Тропинина, 49, Нижний Новгород

Bibliografia

  1. Shay J. L., Wernick J. H. Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications. N.Y: Pergamon, 1975. 244 p. https://doi.org/10.1016/C2013-0-02602-3
  2. Георгобиани А.Н., Радауцан С.И., Тигиняну И.М. Широкозонные полупроводники AIIB III 2 C VI 4: оптические и фотоэлектрические свойства и перспективы применения (Обзор) // Физика и техника полупроводников. 1985. Т. 19. Вып. 2. С. 193–212.
  3. Isaenko L. I., Yelisseyev A. P. Recent Studies of Nonlinear Chalcogenide Crystals for the Mid-IR // Semicond. Sci. Technol. 2016. V. 31. P. 123001. https://doi.org/10.1088/0268-1242/31/12/123001
  4. Tabouret V., Viana B., Petit J. ZnGa 2 Se 4 , a Nonlinear Material with Wide Mid Infrared Transparency and Good Thermomechanical Properties // Opt. Mater.: X. 2019. V. 1. P. 100007. https://doi.org/10.1016/j.omx.2019.100007
  5. Georgobiani A.N., Tagiev B.G., Guseinov G.G., Kerimova T.G., Tagiev O.B., Asadullaeva S.G. Structure and Photoluminescence of ZnGa 2 Se 4 : Eu 2+ // Inorg. Mater. 2010. V. 46. № 5. P. 456–459. https://doi.org/10.1134/S0020168510050031
  6. Kim Y.-G., Lee C. Optical Absorption of Vanadium Doped ZnGa 2 Se 4 Single Crystals // J. Appl. Phys. 1998. V. 83. № 12. P. 8068–8070. https://doi.org/10.1063/1.367902
  7. Kim W., Jin M., Hyeon S. Optical Absorption of ZnGa 2 Se 4 : Cr 2 + Single Crystals // Solid State Commun. 1990. V. 74. № 2. P. 123–125. https://doi.org/10.1016/0038-1098(90)90618-l
  8. Parasyuk O.V., Olekseyuk I.D., Mazurets I.I., Piskach L.V. Phase Equilibria in the Quasi-ternary ZnSe – Ga 2 Se 3 SnSe 2 System // J. Alloys Compd. 2004. V. 379. P. 143–147. https://doi.org/10.1002/chin.200448020
  9. Lin C., Rüssel C., Dai S. Chalcogenide Glass-Ceramics: Functional Design and Crystallization Mechanism // Progr. Mater. Sci. 2018. V. 93. P. 1–44. https://doi.org/10.1016/j.pmatsci.2017.11.001
  10. Calvez L. Transparent Chalcogenide Glass-ceramics // Adam J.-L., Zhang X. Chalcogenide Glasses. Preparation, Properties and Applications. Woodhead, 2014. P. 310–346
  11. Kobayashi T., Osaka J. Gallium Arsenide Growth by Synthesis, Solute Diffusion Method // J. Cryst. Growth. 1984. V. 67. P. 319–323. https://doi.org/10.1016/0022-0248(84)90191-X
  12. Девятых Г.Г., Чурбанов М.Ф. Высокочистые халькогены. Н. Новгород: ННГУ, 1997. 244 с.
  13. Velmuzhov A.P., Sukhanov M.V., Churbanov M.F., Kotereva T.V., Shabarova L.V., Kirillov Yu.P. Behavior of Hydroxyl Groups in Quartz Glass during Heat Treatment in the Range 750–950°C // Inorg. Mater. 2018. V. 54. № 9. P. 925–930. https://doi.org/10.1134/S0020168518090169
  14. Norton F.J. Permeation of Gaseous Oxygen through Vitreous Silica // Nature. 1961. V. 191. 701 p. https://doi.org/10.1038/191701a0
  15. Shelby J.E. Reaction of Hydrogen with Hydroxyl-free Vitreous Silica // J. Appl. Phys. 1980. V. 51. № 5. P. 25889–2593. https://doi.org/10.1063/1.327986
  16. He Y., Wang X., Nie Q., Xu Y., Wang G., Xu T., Dai S. Optical Properties of Ge – Te – Ga Doping Al and AlCl3 Far Infrared Transmitting Chalcogenide Glasses // Infrared Phys. Technol. 2013. V. 58. P. 1–4. https://doi.org/10.1016/j.infrared.2012.12.038
  17. Snopatin G.E., Shiryaev V.S., Plotnichenko V.G., Dianov E.M., Churbanov M.F. High-Purity Chalcogenide Glasses for Fiber Optics // Inorg. Mater. 2009. V. 45. № 13. P. 1439–1460. https://doi.org/10.1134/S0020168509130019
  18. Ketkova L.A., Churbanov M.F. Heterophase Inclusions as a Source of Non-selective Optical Losses in Highpurity Chalcogenide and Tellurite Glasses for Fiber Optics // J. Non-Cryst. Solids. 2017. V. 480. P. 18–22. https://doi.org/10.1016/j.jnoncrysol.2017.09.018
  19. Velmuzhov A.P., Sukhanov M.V., Suchkov A.I., Churbanov M.F., Tyurina E.A. Preparation of ZnGa 2 S 4 by Reacting GaI 3 and ZnI 2 with Sulfur // Inorg. Mater. 2016. V. 52. № 7. P. 650–654. https://doi.org/10.1134/S0020168516070141
  20. Barin I. Thermochemical Data of Pure Substances. N.Y. 1995. 1885 p.
  21. Binnewies M. Thermochemical Data of Elements and Compounds. Second revised. Weinheim: Wiley, 2002. https://doi.org/10.1002/9783527618347.fmatter
  22. Velmuzhov A.P., Sukhanov M.V., Zernova N.S., Shiryaev V.S., Kotereva T.V., Ketkova L.A., Evdokimov I.I., Kurganova A.E. Preparation of Ge 20 Se 80 Glasses with Low Hydrogen and Oxygen Impurities Content for Middle IR Fiber Optics // J. Non-Cryst. Solids. 2019. V. 521. № 4. P. 119505. https://doi.org/10.1016/j.jnoncrysol.2019.119505
  23. PCPDFWIN – a Windows Retrieval/Display Program for accessing the ICDD PDF-2 database, JSPDS – International Center for Diffraction Data. 1998.
  24. Brian H. Toby. R factors in Rietveld Analysis: How Good Is Good Enough? // Powder Diffraction. 2006. V. 21. № 1. P. 67–70. https://doi.org/10.1154/1.2179804
  25. Шефер Г. Химические транспортные реакции (транспорт неорганических веществ через газовую фазу и его применение). М.: Мир, 1964. 194 с.
  26. Li H., Gu Z., Zhang H., Li W. Thermodynamic Analysis and Growth of ZnSe Single Crystals in Zn – Se – I2 System // J. Cryst. Growth. 2015. V. 415. P. 158–165. https://doi.org/10.1016/j.jcrysgro.2014.09.002
  27. Ho C.-H. Ga 2 Se 3 Defect Semiconductors: The Study of Direct Band Edge and Optical Properties // ACS Omega. 2020. V. 5. № 29. P. 18527–18534. https://doi.org/10.1021/acsomega.0c02623
  28. Suzuki H., Mori R. Phase Study on Binary System Ga – Se // Jpn. J. Appl. Phys. 1974. V. 13. № 3. 417 p. https://doi.org/10.1143/JJAP.13.417
  29. Singh H.P., Dayal B. X-Ray Determination of the Thermal Expansion of Zinc Selenide // Phys. Status Solidi. 1967. V. 23. № 1. P. 93–95. https://doi.org/10.1002/pssb.19670230166
  30. McMurdie H.F., Morris M.C., Evans El.H., Paretzkin B., Wong-Ng W., Zhang Y., Hubbard C.R. Standard X-Ray Diffraction Powder Patterns from the JCPDS Research Associateship // Powder Diffraction. 1986. V. 1. № 4. P. 334–345. https://doi.org/10.1017/S0885715600012045
  31. Yeh C.-Y., Lu Z.W., Froyen S., Zunger A. Zinc-Blende–Wurtzite Polytypism in Semiconductors // Phys. Rev. 1992. V. 46. Р. 10086. https://doi.org/10.1103/PhysRevB.46.10086
  32. Morocoima M., Quintero M., Guerrero E., Tovar R., Conflant P. Temperature Variation of Lattice Parameters and Thermal Expansion Coefficients of the Compound ZnGa 2 Se 4 // J. Phys. Chem. 1997. V. 58. № 3. P. 503–547. https://doi.org/10.1016/S0022-3697(96)00048-0
  33. Errandonea D., Kumar R.S., Manjón F.J., Ursaki V.V., Tiginyanu I.M. High-pressure X-ray Diffraction Study on the Structure and Phase Transitions of the Defect-stannite ZnGa 2 Se 4 and Defect-chalcopyrite CdGa 2 S 4 // J. Appl. Phys. 2008. V. 104. Р. 063524. https://doi.org/10.1063/1.2981089
  34. Willis J.R., Bitllough R., Stoneham A.M. The Effect of Dislocation Loops on the Lattice Parameter, Determined by X-ray Diffraction // Philos. Mag. A. 1983. V. 48. № 1. P. 95–107. https://doi.org/10.1080/01418618308234889
  35. Chen N., Wang Y., He H., Lin L. Effects of Point Defects on Lattice Parameters of Semiconductors // Phys. Rev. B. 1996. V. 54. Р. 8516. https://doi.org/10.1103/PhysRevB.54.8516
  36. Rohloff M., Cosgun S., Massué C., Lunkenbein T., Senyshyn A., Lerch M., Fischer A., Behrens M. The Role of Synthesis Conditions for Structural Defects and Lattice Strain in β-TaON and Their Effect on Photo- and Photoelectrocatalysis // Z. Naturforsch. B. 2019. V. 74. № 1. P. 71–83. https://doi.org/10.1515/znb-2018-0171
  37. Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Inter Atomic Distances in Halides and Chalcogenides // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751–767. https://doi.org/10.1107/S0567739476001551
  38. Tantardini C., Oganov A.R. Thermochemical Electronegativities of the Elements // Nat. Commun. 2021. V. 12. Р. 2087. https://doi.org/10.1038/s41467-021-22429-0
  39. Cochran C.N., Foster L.M. Vapor Pressure of Gallium, Stability of Gallium Suboxide Vapor, and Equilibria of Some Reactions Producing Gallium Suboxide Vapor // J. Electrochem. Soc. 1962. V. 109. P. 144–148. https://doi.org/10.1149/1.2425347
  40. Handbook of Preparative Inorganic Chemistry. Edited by G. Brauer. N.Y.: Academic, 1963. 1859 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Thermodynamically determined composition of the vapor (a), condensed (b) phases and the equilibrium degree of transformation of GaI3 into Ga2Se3 in the GaI3–Se system.

Baixar (38KB)
3. Fig. 2. Thermodynamically determined composition of the vapor (a), condensed (b) phases and the equilibrium degree of conversion of ZnI2 to ZnSe in the ZnI2–Se system.

Baixar (31KB)
4. Fig. 3. The setup for loading components into the reactor (stage 1) and synthesizing Ga2Se3, ZnSe and ZnGa2Se4 (stage 2): 1, 2, 3 – ampoules with reagents; 4 – tubular furnaces; 5 – programmable thermostats; 6 – breakable partitions; 7 – magnetic strikers; 8 – outlet tube; 9 – reactor; 10 – iodine receiver; A, B, C – constrictions.

Baixar (29KB)
5. Fig. 4. X-ray diffraction patterns of the products of the interaction of gallium(III) iodide (a) and zinc(II) iodide (b) with selenium (the dashes correspond to the position of the reflections Ga2Se3 (05-0724) and ZnSe (80-0021) [23]).

Baixar (13KB)
6. Fig. 5. X-ray diffraction patterns of the products of the combined interaction of gallium(III) iodide and zinc(II) iodide with selenium at 450°C for 1 (1), 2 (2) and 3 (3) h (the dotted lines correspond to the position of the ZnGa2Se4 reflections (PDF 47-1590) [23]).

Baixar (16KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024