Acceleration of the climate change in the Black Sea upper layer

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The thermohaline regime trends of the Black Sea basin in 2000–2021 were studied based on the data from three retrospective analysis (reanalysis) of the Black Sea hydrophysical fields. It is shown that the cumulative effect of an increase in average the sea surface temperature (SST) and the softening of winter conditions in the Black Sea area in recent 7–8 years leads to the record warming and then the disappearance of the ventilated Black Sea cold intermediate layer (CIL) in its traditional sense by 2020 year. In addition, accelerated warming of sea waters has been observed within the permanent (main) pycnocline in the last 7–8 years. Changes in the thermal regime of the upper sea layer are accompanied by a continued increase in salinity in the main pycnocline.

作者简介

G. Korotaev

Federal State Budget Scientific Institution Federal Research Center “Marine Hydrophysical Institute of the Russian Academy of Sciences“

编辑信件的主要联系方式.
Email: korotaevgren@mail.ru

Corresponding member of the RAS

俄罗斯联邦, Sevastopol

V. Belokopytov

Federal State Budget Scientific Institution Federal Research Center “Marine Hydrophysical Institute of the Russian Academy of Sciences“

Email: korotaevgren@mail.ru
俄罗斯联邦, Sevastopol

V. Dorofeev

Federal State Budget Scientific Institution Federal Research Center “Marine Hydrophysical Institute of the Russian Academy of Sciences“

Email: korotaevgren@mail.ru
俄罗斯联邦, Sevastopol

A. Mizyuk

Federal State Budget Scientific Institution Federal Research Center “Marine Hydrophysical Institute of the Russian Academy of Sciences“

Email: korotaevgren@mail.ru
俄罗斯联邦, Sevastopol

A. Kholod

Federal State Budget Scientific Institution Federal Research Center “Marine Hydrophysical Institute of the Russian Academy of Sciences“

Email: korotaevgren@mail.ru
俄罗斯联邦, Sevastopol

参考

  1. Полонский А. Б., Новикова А. М. Долгопериодная изменчивость характеристик холодного промежуточного слоя в Черном море и ее причины // Метеорология и гидрология. 2020. № 10. С. 29–37.
  2. Belokopytov V. N. Interannual variations of the renewal of waters of the cold intermediate layer in the Black Sea for the last decades // Physical Oceanography. 2011. V. 20. № 5. P. 347–355. https://doi.org/10.1007/s11110-011-9090-x
  3. Stanev E. V., Peneva E., Chtirkova B. Climate change and regional ocean water mass disappearance: Case of the Black Sea // Journal of Geophysical Research: Oceans. 2019. V. 124. № 7. P. 4803–4819. https://doi.org/10.1029/2019JC015076
  4. Dorofeev V. L., Sukhikh L. I. Study of Long-term Variability of Black Sea Dynamics on the Basis of Circulation Model Assimilation of Remote Measurements // Izvestiya. Atmospheric and Oceanic Physics. 2017. V. 53. № 2. P. 224–232.
  5. Коротаев Г. К., Лишаев П. Н., Кныш В. В. Восстановление трехмерных полей солености и температуры Черного моря по данным спутниковых альтиметрических измерений // Исследование Земли из космоса. 2016. № 1–2. С. 199–212.
  6. Lima L. et al. Climate signals in the Black Sea from a multidecadal eddy-resolving reanalysis // Frontiers in Marine Science. 2021. V. 8. P. 710973.
  7. Гандин Л. С. Объективный анализ метеорологических полей. Л.: Гидрометеоиздат, 1963. 287 с.
  8. Григорьев А. В., Иванов В. А., Капустина Н. А. и др. Корреляционная структура термохалинных полей Черного моря в летний сезон // Океанология. 1996. 36. № 3. С. 364–369.
  9. Polonskii A. B., Shokurova I. G. Statistical structure of the large-scale fields of temperature and salinity in the Black Sea // Physical Oceanography. 2008. 18. P. 38–51 https://doi.org/10.1007/s11110-008-9008-4
  10. Korotaev G. K. et al. Development of Black Sea nowcasting and forecasting system // Ocean Science. 2011. V. 7. № 5. P. 629–649.
  11. Madec G. NEMO reference manual, ocean dynamics component // ISSN 1288-1619, Note du pôle de modélisation IPSL № 27, France, January 2016.
  12. Mizyuk A. I., Korotaev G. K., Grigoriev A. V., Puzina O. S., Lishaev P. N. Long-Term Variability of Thermohaline Characteristics of the Azov Sea Based on the Numerical Eddy-Resolving Model // Physical Oceanography. 2019. 26(5). P. 438–450. https://doi.org/10.22449/1573-160X-2019-5-438-450
  13. Dobricic S., Pinardi N. An oceanographic three-dimensional variational data assimilation scheme // Ocean modelling. 2008. V. 22. № 3–4. P. 89–105.
  14. Storto A. et al. Assimilating along-track altimetric observations through local hydrostatic adjustment in a global ocean variational assimilation system // Monthly Weather Review. 2011. V. 139. № 3. P. 738–754.
  15. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021. The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2023.
  16. Balmaseda M. A. et al. The ocean reanalyses intercomparison project (ORA-IP) // Journal of Operational Oceanography. 2015. V. 8. № sup1. P. s80–s97.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024