Использование физиологических методов в создании сортов сои
- Авторы: Синеговская В.Т.1, Фокина Е.М.1, Душко О.С.1
- 
							Учреждения: 
							- ФНЦ «Всероссийский научно-исследовательский институт сои»
 
- Выпуск: № 2 (2024)
- Страницы: 30-35
- Раздел: Растениеводство и селекция
- URL: https://cijournal.ru/2500-2082/article/view/659350
- DOI: https://doi.org/10.31857/S2500208224020078
- ID: 659350
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Представлены результаты изучения работы фотосистемы II в листьях девяти сортов сои селекции ВНИИ сои, чтобы выявить генотипы с повышенной фотосинтетической активностью для включения в селекционный процесс при создании высокопродуктивных сортов нового поколения. Сравнительная оценка сортов дана по показателям эффективного квантового выхода фотосинтеза – Y(II) и флуоресценции хлорофилла (F0), относительной скорости транспорта электронов (ETR) и фотохимического преобразования энергии в зависимости от насыщения светом. Сорта сои Грация, Соната и Китросса по изучаемым параметрам имели самые высокие показатели, значительно превышающие стандартный сорт Лидия. Эффективный квантовый выход фотосинтеза, показывающий степень поглощения солнечной энергии, у сортов Грация и Соната в течение всего вегетационного периода был на уровне 0,80–0,83 отн. ед., с превышением показателя сорта Лидия на 0,09–0,13 отн. ед. в зависимости от фазы роста и развития растений. Квантовый выход флуоресценции (F0) в листьях сорта Лидия в фазе цветения превышал сорта Грация, Соната и Китросса на 60, 56 и 63% соответственно, что указывает на пониженную активность работы фотосистемы II у этого сорта. Эффективность фотохимического преобразования энергии фотосинтеза в фазе цветения была наиболее стабильной в листьях сорта Соната при уровне освещенности от 600 до 1500 мкмоль квантов/(м2∙с). Используя сорт сои Грация в качестве материнской формы (♀) при скрещивании с гибридом Ам.2146, который был получен с включением сорта Соната, также обладающего высокой степенью поглощения квантов света, был создан сорт Лучистая. Он проходил сортоиспытание в 2021–2022 годах, в 2023 включен в Государственный реестр селекционных достижений для возделывания в Дальневосточном (12) регионе.
Ключевые слова
Полный текст
 
												
	                        Об авторах
Валентина Тимофеевна Синеговская
ФНЦ «Всероссийский научно-исследовательский институт сои»
							Автор, ответственный за переписку.
							Email: valsin09@gmail.com
				                					                																			                								
академик РАН, профессор, заслуженный деятель науки РФ
Россия, Благовещенск, Амурская областьЕвгения Михайловна Фокина
ФНЦ «Всероссийский научно-исследовательский институт сои»
														Email: valsin09@gmail.com
				                					                																			                								
кандидат сельскохозяйственных наук
Россия, Благовещенск, Амурская областьОксана Сергеевна Душко
ФНЦ «Всероссийский научно-исследовательский институт сои»
														Email: valsin09@gmail.com
				                					                																			                												                	Россия, 							Благовещенск, Амурская область						
Список литературы
- Головина Е.В. Эколого-генетическая изменчивость содержания пигментов в листьях сортов сои северного экотипа // Зернобобовые и крупяные культуры. 2019. № 3 (31). С. 74–79.
- Зеленцов С.В., Мошненко Е.В., Бубнова Л.А. и др. Среднеранний теневыносливый сорт сои Вилана бета // Масличные Культуры. 2020. Вып. 1 (181). С. 140–146.
- Иванов Л.А., Ронжина Д.А., Юдина П.К. и др. Сезонная динамика содержания хлорофиллов и каротиноидов в листьях степных и лесных растений на уровне вида и сообщества // Физиология растений. 2020. Т. 67. № 3. С. 278–288.
- Кабашникова Л.Ф. Хлорофилл – зеленое вещество жизни // Наука и инновации. 2018. № 1 (179). С. 65–69.
- Кошкин Е.И. Физиология устойчивости сельскохозяйственных культур. М., 2010. 638 с.
- Малыш К.К., Рязанцева Т.П. Некоторые вопросы биологии сои, связанные с методикой гибридизации // Труды Амурской сельскохозяйственной опытной станции. Хабаровск. 1968. Т. 2. Вып. 1. С. 38–48.
- Ничипорович А.А. Световое и углеродное питание растений (фотосинтез). М., 1955. 286 с.
- Русаков В.В., Посыпанов Г.С., Синеговская В.Т. Источники азота для формирования семян сои при различных условиях выращивания // Приемы регулирования продуктивности сои. Новосибирск, 1987. С. 108–126.
- Тимирязев К.А. Избранные сочинения. М.: Сельхозгиз, 1948. Т. 2. 424 с.
- Фокина Е.М., Титов С.А., Губенко О.А. Наследование хозяйственно ценных признаков и гетерозис у гибридов сои F1 // Дальневосточный аграрный вестник: научно-практический журнал. 2020. Вып. 3 (55). С. 76–81.
- Bjorkman O., Deming B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins // Planta. 1987. 170 (4). Р. 489–504.
- Fehr W.R., Caviness C.E., Burmood D.T., Pennington J.S. Stages of development descriptions for soybeans, Glycine max. (L) Merr. // Crop Sci. 1971. № 11. Р. 929–930.
- Krause G.H., Weis E. Chlorophyll fluorescence and photosynthesis: The basics // Annu Rev. Plant. Physiol. Plant. Mol. Biol. 1991. V. 42. P. 313–349.
- Krause G.H., Jahns P. Non-photochemical energy-dissipation determined by chlorophyll fluorescence quenching: characterization and function // Papageorgiou G.C, Govindjee (eds.) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer, The Nether-lands. 2004. V. 19. P. 463–495.
- Mahlein A.K., Kuska M.T., Behmann J. New trends of digital technologies оpportunities for sugar beet cultivation // Int. sugar j. 2019. № 121 (1442). Р. 134–137.
- Matsuda Ryo, Ohashi-Kaneko Keiko, Fujiwara Kazuhiro, Kurata Kenji. Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance // Soil Sci. and Plant Nutr. 2007. № 53 (4). P. 459–465.
- Rahimzadeh-Bajgiran P., Munehiro M., Omasa K. Relationships between the photochemical reflectance index (pri) and chlorophyll fluorescence parameters and plant pigment indices at different leaf growth stages // Photosynthesis Research. 2012. № 113. Р. 261–271. doi: 10.1007/s11120-012-9747-4.
- Shcherban A.B. HD-Zip Genes and Their Role in Plant Adaptation to Environmental Factors. Russian journal of genetics. 2019. № 55 (1). P. 1–9. doi: 10.1134/S1022795419010125.
- Zhang Y., Yang Q., Li T., Kaiser E. Short-term salt stress strongly affects dynamic photosynthesis, but not steady-state photosynthesis, in tomato (solanum lycopersicum) // Environmental and Experimental Botany. 2018. № 149. Р. 109–119. doi: 10.1016/j.envexpbot.2018.02.014.
- Zheng J.F., He D.X., Ji F. Effects of light intensity and photoperiod on runner plant propagation of hydroponic strawberry transplants under LED lighting // International journal of agricultural and biological engineering. 2019. 12 (6). Р. 26–31. doi: 10.25165/j.ijabe.20191206.5265.
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									






