Electrochemical synthesis of a composite of few-layer graphene structures with PdNi alloy nanoparticles and its electrocatalytic activity in the oxidation of methanol

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Nanocomposites of few-layer graphene structures with PdNi alloy nanoparticles were synthesized using the electrochemical dispersion method. The chemical modification of composites was shown to lead to a significant increase in their electrocatalytic activity towards the methanol oxidation reaction.

全文:

受限制的访问

作者简介

V. Kochergin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences

Email: rmanzhos@yandex.ru
俄罗斯联邦, Chernogolovka, Moscow oblast

N. Komarova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences

Email: rmanzhos@yandex.ru
俄罗斯联邦, Chernogolovka, Moscow oblast

A. Kotkin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences

Email: rmanzhos@yandex.ru
俄罗斯联邦, Chernogolovka, Moscow oblast

I. Khodos

Institute of Microelectronics Technology and High Purity Materials of Russian Academy of Sciences

Email: rmanzhos@yandex.ru
俄罗斯联邦, Chernogolovka, Moscow oblast

R. Manzhos

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: rmanzhos@yandex.ru
俄罗斯联邦, Chernogolovka, Moscow oblast

A. Krivenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences

Email: rmanzhos@yandex.ru
俄罗斯联邦, Chernogolovka, Moscow oblast

参考

  1. Zuo, Y., Sheng, W., Tao, W., and Li, Z., Direct methanol fuel cells system–A review of dual-role electrocatalysts for oxygen reduction and methanol oxidation, J. Mater. Sci. Technol., 2022, vol. 114, p. 29.
  2. Kaur, A., Kaur, G., Singh, P.P., and Kaushal, S., Supported bimetallic nanoparticles as anode catalysts for direct methanol fuel cells: A review, Int. J. Hydrogen Energy, 2021, vol. 46, p. 15820.
  3. Tong, Y., Yan, X., Liang, J., and Dou, S. X., Metal‐based electrocatalysts for methanol electro‐oxidation: Progress, opportunities, and challenges, Small, 2021, vol. 17, p. 1904126.
  4. Burhan, H., Cellat, K., Yılmaz, G., and Şen, F., Chapter 3 - Direct methanol fuel cells (DMFCs), In: Akay, R.G., Yurtcan, A.B. editors, Direct liq. Fuel cells. Academic Press, 2021, p. 71.
  5. Yang, H., Geng, L., Zhang, Y., Chang, G., Zhang, Z., Liu, X., Lei, M., and He, Y., Graphene-templated synthesis of palladium nanoplates as novel electrocatalyst for direct methanol fuel cell, Appl. Surf. Sci., 2018, vol. 466, p. 385.
  6. Amin, R.S., Abdel Hameed, R.M., El-Khatib, K.M., and Elsayed Youssef, M., Electrocatalytic activity of nanostructured Ni and Pd–Ni on Vulcan XC-72R carbon black for methanol oxidation in alkaline medium, Int. J. Hydrogen Energy, 2014, vol. 39, p. 2026.
  7. Calderón, J.C., Nieto-Monge, M.J., Pérez-Rodríguez, S., Pardo, J.I., Moliner, R., and Lázaro, M.J., Palladium–nickel catalysts supported on different chemically-treated carbon blacks for methanol oxidation in alkaline media, Int. J. Hydrogen Energy, 2016, vol. 41, p. 19556.
  8. Lu, S., Li, H., Sun, J., and Zhuang, Z., Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles, Nano Res., 2017, vol. 11, p. 2058.
  9. Park, K.-W., Choi, J.-H., Kwon, B.-K., Lee, S.-A., Sung, Y.-E., Ha, H.-Y., Hong, S.-A., Kim, H., and Wieckowski, A., Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation, J. Phys. Chem. B, 2002, vol. 106, p. 1869.
  10. Фаддеев, Н.А., Куриганова, А.Б., Леонтьев, И.Н., Смирнова, Н.В. Электроактивные материалы на основе палладия для экологического катализа. Доклады РАН. Химия, науки о материалах. 2022. T. 507. С. 59. [Faddeev, N.A., Kuriganova, A.B., Leont’ev, I.N., and Smirnova, N.V., Palladium-based electroactive materials for environmental catalysis, Dokl. Phys. Chem., 2022, vol. 507, p. 139.]
  11. Pavlets, A.S., Alekseenko, A.A., Tabachkova, N.Yu., Safronenko, O.I., Nikulin, A.Yu., Alekseenko, D.V., and Guterman, V.E., A novel strategy for the synthesis of Pt–Cu uneven nanoparticles as an efficient electrocatalyst toward oxygen reduction, Int. J. Hydrogen Energy, 2021, vol. 46, p. 5355.
  12. Кривенко, А.Г., Манжос, Р.А., Кочергин, В.К., Малков, Г.В., Тарасов, А.Е., Пивень, Н.П. Плазмоэлектрохимический синтез малослойных графеновых структур для модификации эпоксидного связующего. Химия высоких энергий. 2019. Т. 53. С. 243. [Krivenko, A.G., Manzhos, R.A., Kochergin, V.K., Malkov, G.V., Tarasov, A.E., and Piven, N.P., Plasma electrochemical synthesis of few-layer graphene structures for modification of epoxy binder, High Energy Chem., 2019, vol. 53, p. 254.]
  13. Kochergin, V.K., Manzhos, R.A., Khodos, I.I., and Krivenko A.G., One-step synthesis of nitrogen-doped few-layer graphene structures decorated with Mn 1.5 Co 1.5 O 4 nanoparticles for highly efficient electrocatalysis of oxygen reduction reaction, Mendeleev Commun., 2022, vol. 32, p. 494.
  14. Podlovchenko, B.I., Maksimov, Yu.M., Volkov, D.S., and Evlashin, S.A., Codeposition of Pd and Pb and electrocatalytic properties of their composite, J. Electroanal. Chem., 2020, vol. 858, p. 113787.
  15. Манжос, Р.А., Кочергин, В.К., Кривенко, А.Г., Ходос, И.И., Карабулин, А.В., Матюшенко В.И. Окисление формальдегида на PdNi-нанонитях, синтезированных в сверхтекучем гелии. Электрохимия. 2023. Т. 59. С. 554. [Manzhos, R.A., Kochergin, V.K., Krivenko, A.G., Khodos, I.I., Karabulin, A.V., and Matyushenko, V.I., Oxidation of formaldehyde on PdNi nanowires synthetized in superfluid helium, Russ. J. Electrochem., 2023, vol.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. SEM images of PdNi/MGS (a) and PdNimod/MGS (b) samples.

下载 (459KB)
3. Fig. 2. TEM images of PdNi/MGS (a) and PdNimod/MGS (b) samples. The corresponding electron diffraction patterns are shown in the insets.

下载 (465KB)
4. Fig. 3. (a) CVA for PdNi/MGS (1) and PdNimod/MGS (2), deaerated solution of 0.1 M KOH, 50 mV/s. (b) Oxidation of methanol on PdNi/MGS (1), PdNimod/MGS (2) and Pt/C (3), deaerated solution of 0.1 M KOH + 1 M CH3OH, 50 mV/s, 2000 rpm.

下载 (157KB)

版权所有 © Russian Academy of Sciences, 2024