On features of hyperonic interactions in neutron stars

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Interplay between properties of hyperonic interactions and neutron star observables is studied with Skyrme NN, ΛN, and ΛΛ potentials. It is shown that the ΛN potentials with different density dependencies, which describe Λ hypernuclear spectra equally well, lead to substantially different dependence of neutron star mass on its radius. The role of the nucleon density dependence of ΛΛ potential is considered within the Skyrme formalism at the first time. It is shown that this dependence influences the calculated masses and radii weaker.

作者简介

S. Mikheev

Lomonosov Moscow State University, Faculty of Physics; Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: mikheev.sa16@physics.msu.ru
Moscow, Russia; Moscow, Russia

D. Lanskoy

Lomonosov Moscow State University, Faculty of Physics

Moscow, Russia

A. Nasakin

Lomonosov Moscow State University, Faculty of Physics; Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Moscow, Russia; Moscow, Russia

T. Tretyakova

Lomonosov Moscow State University, Faculty of Physics; Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Moscow, Russia; Moscow, Russia

参考

  1. Takahashi H., Ahn J.K., Akikawa H. et al. // Phys. Rev. Lett. 2001. V. 87. Art. No. 212502.
  2. Cromartie H.T., Fonseca E., Ransom S.M. et al. // Nature Astron. 2019. V. 4. P. 72.
  3. Fonseca E., Cromartie H.T., Pennucci T.T. et al. // Astrophys. J. Lett. 2021. V. 915. Art. No. L12.
  4. Romani R.W., Kandel D., Filippenko A.V. et al. // Astrophys. J. Lett. 2022. V. 934. Art. No. L17.
  5. Vidana I. // EPJ Web Conf. 2022. V. 271. Art. No. 09001.
  6. Dutra M., Lourenco O., Martins S. // Phys. Rev. C. 2012. V. 85. Art. No. 035201.
  7. Rikovska Stone J., Miller J.C., Koncewicz R. et al. // Phys. Rev. C. 2003. V. 68. Art. No. 034324.
  8. Rayet M. // Nucl. Phys. A. 1981. V. 367. P. 381.
  9. Mornas L. // Eur. Phys. J. A. 2005. V. 24. P. 293.
  10. Lanskoy D.E. // Phys. Rev. C. 1998. V. 58. P. 3351.
  11. Minato F., Chiba S. // Nucl. Phys. A. 2011. V. 856. P. 55.
  12. Lanskoy D.E., Yamamoto Y. // Phys. Rev. C. 1997. V. 55. P. 2330.
  13. Yamamoto Y., Motoba T., Rijken T.A. // Progr. Theor. Phys. Suppl. 2010. V. 185. P. 72.
  14. Schulze H.-J., Hiyama E. // Phys. Rev. C. 2014. V. 90. Art. No. 047301.
  15. Yamamoto Y., Bando H., Zofka J. // Prog. Theor. Phys. 1988. V. 80. P. 757.
  16. Fernandez F., Lopez Arias T., Prieto C. // Z. Phys. A. 1989. V. 334. P. 349.
  17. Reinhard P.-G., Flocard H. // Nucl. Phys. A. 1995. V. 584. P. 467.
  18. Chabanat E., Bonche P., Haensel P. et al. // Nucl. Phys. A. 1997. V. 627. P. 710.
  19. Shen S., Colò G., Roca-Maza X. // Phys. Rev. C. 2019. V. 99. Art. No. 034322.
  20. Glendenning N.K. // Astrophys. J. 1985. V. 293. P. 470.
  21. Tolman R.C. // Phys. Rev. 1939. V. 55. P. 364.
  22. Oppenheimer J.R., Volkoff G.M. // Phys. Rev. 1939. V. 55. P. 374.
  23. Baym G., Pethick C., Sutherland P. // Astrophys. J. 1971. V. 170. P. 299.
  24. Mikheev S., Lanskoy D., Nasakin A., Tretyakova T. // Particles. 2023. V. 6. P. 847.
  25. Насакин А.И., Ланской Д.Е., Михеев С.А., Третьякова Т.Ю. // ЭЧАЯ. 2025. Т. 56.№3. С. 1583.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025