Investigation of the viscosity of magnetic-liquid systems using the developed capillary viscometer

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

We studied the viscosity of liquids using a capillary viscometer of our own design. The viscosity value is determined by the pressure drop in the capillary, which makes it possible to study optically opaque liquids and carry out measurements in a magnetic field. A series of calibration experiments were carried out on liquids with a known viscosity value. The obtained dependences of the magnetic-viscous effect in magnetic fluid samples with different structures and physical parameters are consistent with known theoretical and experimental data.

Texto integral

Acesso é fechado

Sobre autores

A. Churaev

Southwest State University

Email: r-piter@yandex.ru
Rússia, Kursk, 305040

E. Shel’deshova

Southwest State University

Email: r-piter@yandex.ru
Rússia, Kursk, 305040

E. Bondar’

Southwest State University

Email: r-piter@yandex.ru
Rússia, Kursk, 305040

P. Ryapolov

Southwest State University

Autor responsável pela correspondência
Email: r-piter@yandex.ru
Rússia, Kursk, 305040

Bibliografia

  1. Schinteie G., Palade P., Vekas L., Iacob N. et al. // J. Phys. D. Appl. Phys. 2013. V. 46. No. 39. Art. No. 395501.
  2. Zhou H., Chen Y., Zhang Y. et al. // Tribol. Trans. 2021. V. 64. No. 1. P. 31.
  3. Wei F., Mallik A.K., Liu D. et al. // Sci. Reports. 2017. V. 7. No. 1. P. 4725.
  4. Zhao Y., Wang X.X., Lv R.Q. et al. // IEEE Trans. Instrum. Meas. 2020. V. 70. P. 1.
  5. Munshi M.M., Patel A.R., Deheri G.M. // IJMEMS. 2019. V. 4. No. 4. P. 982.
  6. Jia J., Yang G., Zhang C. et al. // Friction. 2021. V. 9. P. 61.
  7. Wang J., Zhuang W., Liang W. et al. // Friction. 2022. V. 10. No. 5. P. 645.
  8. Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Sheldeshova E.V. et al. // Bull. Russ. Acad. Sci. 2023. V. 87. No. 3. P. 295.
  9. Ряполов П.А., Соколов Е.А., Калюжная Д.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 348; Ryapolov P.A., Sokolov E.A., Kalyuzhnaya D.A. // Bull. Russ. Acad. Sci. 2023. V. 87. No. 3. P. 300.
  10. Ерин К.В., Вивчарь В.И., Шевченко Е.И. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 315; Yerin K.V., Vivchar V.I., Shevchenko E.I. // Bull. Russ. Acad. Sci. 2023. V. 87. No. 3. P. 272.
  11. Shliomis M.I. // Lect. Notes Phys. 2008. P. 85.
  12. Rosensweig R.E., Kaiser R., Miskolczy G. // J. Colloid Interface Sci. 1969. V. 29. No. 4. P. 680.
  13. Ambacher O., Odenbach S., Stierstadt K. // Z. Phys. B. Cond. Matter. 1992. V. 86. No. 1. P. 29.
  14. Odenbach S. // Int. J. Modern Phys. B. 2000. V. 14. No. 16. P. 1615.
  15. Odenbach S., Thurm S. // In: Ferrofluids: magnetically controllable fluids and their applications. Berlin, Heidelberg: Springer, 2002. P. 185.
  16. Viswanath D.S., Ghosh T.K., Prasad D.H. et al. Viscosity of liquids: theory, estimation, experiment, and data. Springer Science & Business Media, 2007.
  17. Woodfield P.L., Seagar A., Hall W. // Int. J. Thermophys. 2012. V. 33. P. 259.
  18. Sato Y., Kameda Y., Nagasawa T. et al. // J. Crystal Growth. 2003. V. 249. No. 3–4. P. 404.
  19. Zhu P., Lai J., Shen J. et al. // Measurement. 2018. V. 122. P. 149.
  20. Linke J.M., Odenbach S. // J. Phys. Cond. Matter. 2015. V. 27. No. 17. Art. No. 176001.
  21. Pop L.M., Odenbach S. // J. Phys. Cond. Matter. 2008. V. 20. No. 20. Art. No. 204139.
  22. Nowak J., Odenbach S. // J. Magn. Magn. Mater. 2016. V. 411. P. 49.
  23. Nowak J., Borin D., Haefner S. et al. // J. Magn. Magn. Mater. 2017. V. 442. P. 383.
  24. Шельдешова Е.В., Ряполов П.А., Рекс А.Г. и др. // Изв. Юго-Запад. гос. ун-та. Сер. Техн. и технол. 2022. Т. 12. № 3. С. 130.
  25. Shel’deshova E., Churaev A., Ryapolov P. // Fluids. 2023. V. 8. No. 2. P. 47.
  26. Полунин В.М. Акустические свойства нанодисперсных магнитных жидкостей. М.: Физматлит, 2012. 384 с.
  27. Polunin V. Acoustics of nanodispersed magnetic fluids. CRC Press, 2015.
  28. Polunin V.M., Storozhenko A.M., Ryaplolov P.A. Mechanics of liquid nano-and microdispersed magnetic media. CRC Press, 2017.
  29. Afifah A.N., Syahrullail S., Sidik N.A.C. // Renew. Sustain. Energy Rev. 2016. V. 55. P. 1030.
  30. Felicia L.J., Vinod S., Philip J. // J. Nanofluids. 2016. V. 5. No. 1. P. 1.
  31. Vékás L., Raşa M., Bica D. // J. Colloid Interface Sci. 2000. V. 231. No. 2. P. 247.
  32. Hong R.Y., Zhang S.Z., Han Y.P. et al. // Powder Technol. 2006. V. 170. No. 1. P. 1.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Block diagram of a capillary viscometer: 1 – capillary, 2 – area in which the pressure difference will be measured, 3 – pressure sensor.

Baixar (43KB)
3. Fig. 2. Block diagram of the setup for measuring the magnetoviscous effect of magnetic fluids under the influence of an external magnetic field: 1 – capillary, 2 – FL-1 electromagnet, 3 – pressure sensor, 4 – syringe pump, 5 – voltmeter, 6 – power source for the sensor, 7 – power source for the electromagnet.

Baixar (49KB)
4. Fig. 3. Dependence of the viscosity ratio on the viscosity of a rotational viscometer.

Baixar (67KB)
5. Fig. 4. Dependence of the magnetoviscous effect of МЖ-2.1, МЖ-2.2, МЖ-2.3 on the magnetic field strength.

Baixar (113KB)
6. Fig. 5. Dependence of the magnetoviscous effect of МЖ-1.1, МЖ-1.3 on the magnetic field strength.

Baixar (82KB)
7. Fig. 6. Dependence of the magnetoviscous effect of МЖ-1.2.1, МЖ-1.2.2 on the magnetic field strength.

Baixar (84KB)
8. Fig. 7. Dependence of the magnetoviscous effect on the concentration of the magnetic fluid.

Baixar (60KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024