Effects of local parity nonconservation in strong interactions in Pb-Pb collisions at LHC energy
- Autores: Kovalenko V.N.1
-
Afiliações:
- Saint-Petersburg State University
- Edição: Volume 88, Nº 11 (2024)
- Páginas: 1777–1782
- Seção: Fundamental problems and applications of physics of atomic nucleus
- URL: https://cijournal.ru/0367-6765/article/view/682569
- DOI: https://doi.org/10.31857/S0367676524110198
- EDN: https://elibrary.ru/FKBZNA
- ID: 682569
Citar
Texto integral



Resumo
Accounting for the effects of local parity nonconservation in a strongly interacting medium is implemented within the framework of the Monte Carlo model. Predictions are obtained for the distributions of the invariant masses of di-muons and di-electrons from the decays of light vector mesons in Pb-Pb collisions at the LHC energy, taking into account the resolution of the detecting systems. The influence of fluctuations of the axial chemical potential is estimated.
Texto integral

Sobre autores
V. Kovalenko
Saint-Petersburg State University
Autor responsável pela correspondência
Email: v.kovalenko@spbu.ru
Rússia, St. Petersburg, 199034
Bibliografia
- Kharzeev D., Zhitnitsky A. // Nucl. Phys. A. 2007. V. 797. P. 67.
- Buckley K., Fugleberg T., Zhitnitsky A. // Phys. Rev. Lett. 2000. V. 84. P. 4814.
- Son D.T., Zhitnitsky A.R. // Phys. Rev. D. 2004. V. 70. Art. No. 07401.
- Andrianov A.A., Andrianov V.A., Espriu D., Planells X. // Phys. Lett. B. 2012. V. 710. P. 230.
- Andrianov A.A., Andrianov V.A., Espriu D., Planells X. // Phys. Rev. D. 2014. V. 90. Art. No. 034024.
- Andrianov A., Espriu D., Planells X. // Eur. Phys. J. C. 2013. V. 73. P. 2294.
- Andrianov A.A., Andrianov V.A., Espriu D. et al. // EPJ Web Conf. 2017. V. 158. Art. No. 03012.
- Abelev B., Adam J., Adamova D. et al. (ALICE Collaboration) // J. Physics G. 2014. V. 41. Art. No. 087001.
- Belavin A.A., Polyakov A.M., Shvarts A.S., Tyupkin Y.S. // Phys. Lett. B. 1975. V. 59. P. 85.
- McLerran L.D., Mottola E., Shaposhnikov M.E. // Phys. Rev. D. 1991. V. 43. P. 2027.
- Moore G.D., Rummukainen K. // Phys. Rev. D. 2000. V. 61. Art. No. 105008.
- Shuryak E., Zahed I. // Phys. Rev. D. 2003. V. 67. Art. No. 014006.
- Kharzeev D., Pisarski R.D., Tytgat M.H.G. // Phys. Rev. Lett. 1998. V. 81. P. 512.
- Kharzeev D. // Phys. Lett. B. 2006. V. 633. P. 260.
- Хайдуков З.В. // Письма в ЖЭТФ. 2023. Т. 117. № 10. С. 719; Khaidukov Z.V. // JETP Lett. 2023. V. 117. No. 10. P. 721.
- Kovalenko V., Andrianov A., Andrianov V. // J. Phys. Conf. Ser. 2020. V. 1690. Art. No. 012097.
- Andrianov A.A., Andrianov V.A., Espriu D. // Particles. 2020. V. 3. P. 15.
- Putilova A.E., Iakubovich A.V., Andrianov A.A. et al. // EPJ Web Conf. 2018. V. 191. Art. No. 05014.
- Sjöstrand T., Ask S., Christiansen J.R. et al. // Comput. Phys. Commun. 2015. V. 191. P. 159.
- Abelev B., Adam J., Adamova D. et al. (ALICE Collaboration) // J. Physics G. 2014. V. 41 Art. No. 087002.
- Garcia-Solis E. for the ALICE Collaboration // Nucl. Part. Phys. Proc. 2015. V. 267–269. P. 382.
- Eвдокимов С.В., Изучеев В.И., Кондратюк Е.С. и др. // Письма в ЖЭТФ. 2021. Т. 113. С. 291; Evdokimov S.V., Izucheev V.I., Kondratyuk E.S. et al. // JETP Lett. 2021. V. 113. P. 289.
- Abgaryan V., Acevedo Kado R., Afanasyev S.V. et al. (MPD Collaboration) // Eur. Phys. J. A. 2022. V. 58. Art. No. 140.
- Иванищев Д.А., Котов Д.О., Малаев М.В и др. // Изв. РАН. Сер. физ. 2022. Т. 5. № 12. С. 1800; Ivanishchev D.A., Kotov D.O., Malaev M.V. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 12. P. 1439.
- Abramov V.V., Aleshko A., Baskov V.A. et al. // Phys. Part. Nucl. 2021. V. 52. P. 1044.
Arquivos suplementares
Arquivos suplementares
Ação
1.
JATS XML
2.
Fig. 1. Distribution of invariant masses of di-muons from decays of ρ- and ω-mesons without taking into account detector effects in the presence of a medium violating P-parity at μ5 = 0.1 GeV: without selection by the angle θA between leptons (a), under the condition 0.4 < θA < 0.5 (b).
Baixar (107KB)
3.
Fig. 2. Distribution of invariant masses of di-muons (a, c) and di-electrons (b, d) from decays of ρ- and ω-mesons under the conditions of the ALICE Run 2 experiment at μ5 = 0.1 GeV: without selection by angle θA (a, b), under the condition 0.4 < θA < 0.8 (c), under the condition 0.4 < θA < 0.5 (d).
Baixar (164KB)
4.
Fig. 3. Distribution of invariant masses of di-muons (a, c) and di-electrons (b, d) from decays of ρ- and ω-mesons under the expected conditions of the ALICE Run 3 experiment at μ5 = 0.1 GeV: without selection by angle θA (a, b), under the condition 0.4 < θA < 0.5 (c, d).
Baixar (125KB)
5.
Fig. 4. Effect of axial chemical potential fluctuations on the splitting of the spectral functions of ρ- and ω-mesons in the spectrum of invariant masses of di-muons (a, c) and di-electrons (b, d): 0.05 GeV < μ5 < 0.15 GeV (σμ ≈ 30%) (a, b), 0 GeV < μ5 < 0.2 GeV (σμ ≈ 60%) (c, d). The resolving power of the ALICE experiment under Run 3 conditions is taken into account.
Baixar (122KB)
