Ferromagnetic resonance and magnetic anisotropy of 3-d metal wires with gradients of composition

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We discussed experimental results concerning the ferromagnetic resonance spectra characteristics of Co-Ni and Co-Fe-Ni wires arrays with different gradients of composition deposited into porous of track etched polycarbonate membranes. The influence of interfacial boundaries and concentration gradients on the effective field of the investigated wires has been studied. An anomalous angular dependence of the FMR resonance fields is observed for wires arrays with a membrane pore density of ~18%.

Texto integral

Acesso é fechado

Sobre autores

E. Denisova

Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Scientific Centre of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University

Autor responsável pela correspondência
Email: len-den@iph.krasn.ru
Rússia, Krasnoyarsk, 660036; Krasnoyarsk, 660041

L. Chekanova

Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Scientific Centre of the Siberian Branch of the Russian Academy of Sciences

Email: len-den@iph.krasn.ru
Rússia, Krasnoyarsk, 660036

S. Komogortsev

Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Scientific Centre of the Siberian Branch of the Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology

Email: len-den@iph.krasn.ru
Rússia, Krasnoyarsk, 660036; Krasnoyarsk, 660049

R. Iskhakov

Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Scientific Centre of the Siberian Branch of the Russian Academy of Sciences

Email: len-den@iph.krasn.ru
Rússia, Krasnoyarsk, 660036

I. Vazhenina

Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Scientific Centre of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University

Email: len-den@iph.krasn.ru
Rússia, Krasnoyarsk, 660036; Krasnoyarsk, 660041

I. Nemtsev

Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Scientific Centre of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University; Federal Research Center Krasnoyarsk Scientific Centre of the Siberian Branch of the Russian Academy of Sciences

Email: len-den@iph.krasn.ru
Rússia, Krasnoyarsk, 660036; Krasnoyarsk, 660041; Krasnoyarsk, 660036

О. Li

Siberian Federal University; Federal Research Center Krasnoyarsk Scientific Centre of the Siberian Branch of the Russian Academy of Sciences

Email: len-den@iph.krasn.ru
Rússia, Krasnoyarsk, 660041; Krasnoyarsk, 660036

Bibliografia

  1. Pereira A., Palma J.L., Vázquez M. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 5033.
  2. Rial J., Proenca M.P. // Nanomaterials. 2020. V. 10. P. 2403.
  3. Darques M., Spiegel J., De la Torre Medina J. et al. // J. Magn. Magn. Mater. 2009. V. 321. P. 2055.
  4. Parkin S.S., Hayashi M., Thomasй L. et al. // Science. 2008. V. 320. No. 11. P. 190
  5. Wang D.-S., Mukhtar A., Wu K.-M., Gu L., Cao X. // Materials. 2019. V. 12. P. 3908.
  6. Zeng M., Yang H., Liu J., Yu R. // J. Appl. Phys. 2014. V. 115. Art. No. 17B514.
  7. Загорский Д.Л., Долуденко И.М., Каневский В.М. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 8. С. 1090; Zagorskiy D.L., Doludenko I.M., Kanevsky V.M. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 8. Р. 848.
  8. Yang H., Li Y., Zeng M. et al. // Sci. Reports. 2016. V. 6. Art. No. 20427.
  9. Méndez M., Gonzalez S., Vega V. et al. // Crystals. 2017. V. 7. No. 3. P. 66.
  10. Bran C., Ivanov Y.P., Kosel J. et al. // Nanotechnology. 2017. V. 28. No. 9. Art. No. 095709.
  11. Denisova E.A., Chekanova L.A., Komogortsev S.V. et al. // IEEE Trans. Magn. 2022. V. 58. No. 2. Art. No. 2300805.
  12. Iskhakov R.S., Chekanova L.A., Denisova E.A. // IEEE Trans. Magn. 1997. v. 33. No. 5. P. 3730.
  13. Kittel C. // Phys. Rev. 1948. V. 73. No. 2. Р. 155.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. SEM images of Co-Ni threads (a); top view of the PCTM with a porosity of 7% (b) and 18% (c); EDX analysis data demonstrating a “step-like” gradient of 1 – Co, 2 – Fe and 3 – Ni content (d) and a “smooth” gradient of 1 – Co and 2 – Ni (d) along the rod axis.

Baixar (210KB)
3. Fig. 2. FMR spectra of coaxial Co@Ni threads for membranes with different pore density: 7% (a) and 18% (b) and Co-Ni threads with a linear gradient of Ni concentration for a membrane with a pore density of 18% (c), measured at different orientations of the longitudinal axis of the thread relative to the external field (1 - the field is applied along the longitudinal axis of the thread, 2 - perpendicular to this axis). The insets show SEM images of the surface of the corresponding PCT membranes with deposited Co@Ni threads.

Baixar (174KB)
4. Fig. 3. Angular dependences of the FMR resonance field for coaxial Co@Ni threads in a PCT membrane with a porosity of 5% (a) and 18% (b) (1 - for the Co core, 2 - Ni shell, 3 - additional peak). Dependences Hr(φ) for homogeneous CoNi threads in a PCT membrane with a porosity of 5% (c) and for gradient CoNi threads in a PCT membrane with a porosity of 18% (d) (1 - for the CoNi alloy, 2 - additional peak). φ = 0 corresponds to the direction of the external field along the longitudinal axis of the threads.

Baixar (144KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024