Study of magnetic and optical properties of Ni@Au nanotubes for local anti-cancer therapy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The magnetic and optical properties of gold-coated nickel nanotubes obtained by template synthesis have been studied. A change in the relative intensity of an optical beam passing through a solution of nanotubes in a magnetic field perpendicular and parallel to the beam propagation shows the possibility of orienting nanotubes along the magnetic field. The results provide an assessment of the applicability of such nanotubes in combined photothermal and magnetomechanical anticancer therapy.

Texto integral

Acesso é fechado

Sobre autores

A. Anikin

Immanuel Kant Baltic Federal University

Autor responsável pela correspondência
Email: anikinanton93@gmail.com
Rússia, Kaliningrad, 236041

E. Shumskaya

Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus

Email: anikinanton93@gmail.com
Belarus, Minsk, 220141

S. Bedin

Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences”

Email: anikinanton93@gmail.com
Rússia, Moscow, 119333

I. Doludenko

Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences”

Email: anikinanton93@gmail.com
Rússia, Moscow, 119333

D. Khairetdinova

National University of Science and Technology “MISIS”

Email: anikinanton93@gmail.com
Rússia, Moscow, 119049

V. Belyaev

Immanuel Kant Baltic Federal University

Email: anikinanton93@gmail.com
Rússia, Kaliningrad, 236041

V. Rodionova

Immanuel Kant Baltic Federal University

Email: anikinanton93@gmail.com
Rússia, Kaliningrad, 236041

L. Panina

Immanuel Kant Baltic Federal University; National University of Science and Technology “MISIS”

Email: anikinanton93@gmail.com
Rússia, Kaliningrad, 236041; Moscow, 119049

Bibliografia

  1. Pankhurst Q.A., Connolly J., Jones S.K., Dobson J.P. // J. Phys. D. 2003. V. 36. No. 13. P. R167.
  2. Dutz S., Hergt R. // Nanotechnology. 2014. V. 25. No. 45. P. 452001.
  3. Oliveira H., Perez‐Andres E., Thevenot J. // J. Control. Release. 2013. V. 169. P. 165.
  4. Janssen X.J.A., Schellekens A.J., Van Ommering K. et al. // Biosens. Bioelectron. 2009. V. 24. No. 7. P. 1937.
  5. Maniotis N., Makridis A., Myrovali E. et al. // J. Magn. Magn. Mater. 2019. V. 470. P. 6.
  6. Novosad V., Rozhkova E.A. // Biomed. Engin. Trends Mater. Sci. 2011. P. 425.
  7. Shen Y., Wu C., Uyeda T.Q.P. et al. // Theranostics. 2017. V. 7. No. 6. P. 1735.
  8. Fung A.O., Kapadia V., Pierstorff E. et al. // J. Phys. Chem. C. 2008. V. 112. No. 39. P. 15085.
  9. Martínez-Banderas A.I., Aires A., Teran F.J. et al. // Sci. Reports. 2016. V. 6. No. 1. P. 35786.
  10. Загорский Д.Л., Долуденко И.М., Каневский В.М. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 8. С. 10; Zagorskiy D.L., Doludenko I.M., Kanevsky V.M. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 8. P. 1090.
  11. Shumskaya A., Bundyukova V., Kozlovskiy A. et al. // J. Magn. Magn. Mater. 2020. V. 497. P. 165913.
  12. Zagorskiy D., Doludenko I., Zhigalina O. et al. // Membranes. 2022. V. 12. No. 2. P. 195.
  13. Kozlovskiy A.L., Korolkov I.V., Kalkabay G. et al. // J. Nanomaterials. 2017. V. 2017. P. 1.
  14. Shumskaya A., Korolkov I., Rogachev A. et al. // Colloids Surf. A. 2021. V. 626. P. 127077.
  15. Kaniukov E.Yu., Shumskaya E.E., Kutuzau M.D. et al. // Devices Meth. Measurements. 2017. V. 8. No. 3. P. 214.
  16. Espinosa A., Kolosnjaj‐Tabi J., Abou‐Hassan A. et al. // Adv. Funct. Materials. 2018. V. 28. Art. No. 1803660.
  17. Hemmer E., Benayas A., Légaré F., Vetrone F. // Nanoscale Horiz. 2016. V. 1. No. 3. P. 168.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Results of NT synthesis: (a) optical micrograph of Ni-NT, (b) SEM image of Ni-NT located in the pores of TM, where each circle is the end of the NT; (c) SEM image of Ni-NT@Au, (d) EDA analysis of Ni-NT@Au for the spectra of nickel and gold, made on the same area.

Baixar (208KB)
3. Fig. 2. Hysteresis loop of Ni-HT@Au powder samples.

Baixar (75KB)
4. Fig. 3. Change in the relative intensity of the optical beam passed through the Ni-NT solution when switching on/off a constant magnetic field with a strength of 80 Oe, directed parallel (upper, orange curve) or perpendicular (lower, black curve) to the beam. The intensity is normalized by the signal level in the absence of a magnetic field, I0.

Baixar (176KB)
5. Fig. 4. Optical density spectrum of Ni-NT (black curve) and Ni-NT@Au (orange curve) in 5% aqueous SDS solution. The NT concentration was 100 μg/ml. The inset shows a graph of the change in optical density of the Ni-NT solution over time, measured at a light wavelength of 700 nm.

Baixar (116KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024