Fabry-Perot and Tamm modes hybridization in spatially non-homogeneous magneto-photonic crystal

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We presented the results of studying the features of various resonant modes excitation in a spatially non-homogeneous magnetophotonic crystal with a plasmonic coating. It has been shown that in a such crystal several resonant Fabry-Perot modes and the Tamm plasmon mode are generated at once, which undergo a spectral shift inside the photonic bandgap when the thicknesses of the optical and magnetic layers of magnetophotonic crystal is change.

Full Text

Restricted Access

About the authors

O. A. Tomilina

Vernadsky Crimean Federal University

Author for correspondence.
Email: olga_tomilina@mail.ru
Russian Federation, Simferopol, 295007

A. L. Kudryashov

Vernadsky Crimean Federal University

Email: olga_tomilina@mail.ru
Russian Federation, Simferopol, 295007

A. V. Karavaynikov

Vernadsky Crimean Federal University

Email: olga_tomilina@mail.ru
Russian Federation, Simferopol, 295007

S. D. Lyashko

Vernadsky Crimean Federal University

Email: olga_tomilina@mail.ru
Russian Federation, Simferopol, 295007

E. T. Milyukova

Vernadsky Crimean Federal University

Email: olga_tomilina@mail.ru
Russian Federation, Simferopol, 295007

V. N. Berzhansky

Vernadsky Crimean Federal University

Email: olga_tomilina@mail.ru
Russian Federation, Simferopol, 295007

S. V. Tomilin

Vernadsky Crimean Federal University

Email: olga_tomilina@mail.ru
Russian Federation, Simferopol, 295007

References

  1. Inoue M., Baryshev A., Goto T. et al. // In: Magnetophotonics. Springer Series in Materials Science. V. 178. Berlin, Heidelberg: Springer, 2013.
  2. Romodina M., Soboleva I., Musorin A. et al. // Phys. Rev. B. 2017. V. 96. No. 8. Art. No. 081401.
  3. Lyubchanskii I., Dadoenkova N., Lyubchanskii M. et al. // J. Phys. D. Appl. Phys. 2003. V. 36. No. 18. Art. No. R277.
  4. Baryshev A., Kawasaki K., Lim P., Inoue M. // Phys. Rev. B. 2012. V. 85. No. 20. Art. No. 205130.
  5. Bikbaev R., Vetrov S., Timofeev I. // Photonics. 2018. V. 5. No. 3. Art. No. 22.
  6. Сычев Ф.Ю., Капра Р.В., Мошнина И.А. и др. // Изв. РАН. Сер. физ. 2007. Т. 71. № 1. С. 29; Sychev F.Yu., Kapra R.V., Moshnina I.A. et al. // Bull. Russ. Acad. Sci. Phys. 2007. V. 71. No. 1. P. 24.
  7. Бержанский В.Н., Шапошников А.Н., Прокопов А.Р. и др. // ЖЭТФ. 2016. Т. 150. № 5. P. 859; Berzhansky V., Shaposhnikov A., Prokopov A. et al. // J. Exp. Theor. Phys. 2016. V. 123. No. 5. P. 744.
  8. Khartsev S., Grishin A. // J. Appl. Phys. 2007. V. 101. No. 5. Art. No. 053906.
  9. Yin C., Wang T., Wang H. // Eur. Phys. J. B. 2012. V. 85. No. 3. Art. No. 104.
  10. Левкина Г.Ю., Сапарина Д.О., Калиш А.Н., Сухоруков А.П. // Изв. РАН. Сер. физ. 2010. Т. 74. № 12. С. 1778; Levkina G. Yu., Saparina D.O., Kalish A.N., Sukhorukov A.P. // Bull. Russ. Acad. Sci. Phys. 2010. V. 74. No. 12. P. 1708.
  11. Белотелов В.И., Волкова З.А., Досколович Л.Л. и др. // Изв. РАН. Сер. физ. 2007. Т. 71. № 12. С. 1574; Belotelov V.I., Volkova Z.A., Doskolovich L.L. et al. // Bull. Russ. Acad. Sci. Phys. 2007. V. 71. No. 12. P. 1530.
  12. Виноградов А.П., Дорофеенко А.В., Мерзликин А.М., Лисянский А.А. // УФН. 2010. № 180. С. 249; Vinogradov A.P., Dorofeenko A.V., Merzlikin A.M., Lisyansky A.A. // Phys. Usp. 2010. No. 53. P. 243.
  13. Malkova N., Ning C. // Phys. Rev. B. 2006. V. 73. No. 11. Art. No. 113113.
  14. Kaliteevski M., Iorsh I., Brand S. et al. // Phys. Rev. B. 2007. V. 76. No. 16. Art. No. 165415.
  15. Goto T., Dorofeenko A., Merzlikin A. et al. // Phys. Rev. Lett. 2008. V. 101. No. 11. Art. No. 113902.
  16. Kaliteevski M., Brand S., Abram R. et al. // Appl. Phys. Lett. 2009. V. 95. No. 25. Art. No. 251108.
  17. Brückner R., Sudzius M., Hintschich S. et al. // Phys. Rev. B. 2011. V. 83. No. 3. Art. No. 033405.
  18. Zhou H.-Ch., Yang G., Wang K. et al. // Chin. Phys. Lett. 2012. V. 29. No. 6. Art. No. 067101.
  19. Afnogenov B., Bessonov V., Nikulin A., Fedyanin A. // Appl. Phys. Lett. 2013. V. 103. No. 6. Art. No. 061112.
  20. Rahman S., Klein T., Klembt S. et al. // Sci. Reports. 2016. V. 6. No. 1. Art. No. 34392.
  21. Головко П.В., Игнатьева Д.О., Калиш А.Н., Белотелов В.И. // Изв. РАН. Сер. физ. 2021. T. 85. № 1. С. 34; Golovko P.V., Ignatyeva D.O., Kalish A.N., Belotelov V.I. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 1. P. 25.
  22. Mikhailova T., Lyashko S., Tomilin S. et al. // J. Phys. Conf. Ser. 2017. V. 917. Art. No. 062053.
  23. Mikhailova T., Shaposhnikov A., Prokopov A. et al. // EPJ Web Conf. 2018. V. 185. Art. No. 02016.
  24. Mikhailova T., Tomilin S., Lyashko S. et al. // Opt. Mater. Exp. 2022. V. 12. No. 2. P. 685.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Model for calculating the distribution of the thickness of functional layers during magnetron sputtering.

Download (88KB)
3. Fig. 2. Results of the experimental study of the distribution of the thickness of the deposited TiO2 layers at different distances l from the target to the substrate: l = 30 (a); 45 (b) and 60 mm (c) (dots – experimental data, solid curve – model analysis).

Download (186KB)
4. Fig. 3. Structure of a spatially inhomogeneous MPC with gradient functional layers: general diagram (a), distribution of the thickness of the functional layers along the gradient (b), SEM image of the cross-section of the lower Bragg mirror in the “thin” part (c).

Download (405KB)
5. Fig. 4. Transmission spectra of a spatially inhomogeneous 4-pair Bragg mirror GGG/(SiO2/TiO2)4 (a) and a magnetophotonic crystal GGG/(SiO2/TiO2)4/M1/M2/(TiO2/SiO2)4 (b) (the thicknesses of the TiO2/SiO2 layers in the study area are indicated in the legend, the spectra shift is + 0.1).

Download (301KB)
6. Fig. 5. Transmission spectra of a spatially inhomogeneous MPC with a plasmonic coating GGG/(SiO2/TiO2)4/M1/M2/(TiO2/SiO2)4/TiO2(buff)/Au (the thicknesses of the TiO2/SiO2 layers in the study area are indicated in the legend, the spectral shift is + 0.02) (a). Spectral position of the Fabry-Perot (FP) resonance modes and Tamm plasmons (TP) in different areas of the spatially inhomogeneous MPC (b).

Download (276KB)
7. Fig. 6. Spectra of the magneto-optical Faraday effect in the spatially inhomogeneous GGG/(SiO2/TiO2)4/M1/M2/(TiO2/SiO2)4 MFC in different sections of the gradient (a); comparison of the transmission and magneto-optical rotation spectra in the sections TiO2/SiO2/M1/M2=74/115/67/165 nm (b) and TiO2/SiO2/M1/M2 = 78/122/71/177 nm (c).

Download (369KB)
8. Fig. 7. Spectra of the magneto-optical Faraday effect in a spatially inhomogeneous MPC with a plasmonic layer GGG/(SiO2/TiO2)4/M1/M2/(TiO2/SiO2)4/TiO2(buff)/Au in different sections of the gradient (a); comparison of the spectra of magneto-optical rotation in a MPC without a plasmonic layer (Fabry-Perot) and with a plasmonic layer (Fabry-Perot + Tamm) in the sections TiO2/SiO2/M1/M2 = 74/115/67/165 nm (b) and TiO2/SiO2/M1/M2 = 78/122/71/177 nm (c).

Download (457KB)

Copyright (c) 2024 Russian Academy of Sciences