Stabilization of silver iodide sols particles by acetate and N-scucinil of chitosan

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article is devoted to the study of the regularities of stabilization of colloidal particles of silver iodide sols by polymeric stabilizers – chitosan acetate and sodium salt of chitosan N-succinyl. The relevance of the work is due to the fact that the creation of stable polymer-colloidal dispersions based on water-soluble derivatives of chitosan and inorganic colloidal particles with antiseptic properties is one of the ways to create hybrid gel-like and film materials for biomedical purposes. It was proved that in the presence of chitosan acetate polycation with a concentration of 0.1% mas. adsorption of similarly charged macroions on the particles of the dispersed phase leads to an increase in the stability of the AgI sol with positively charged colloidal particles using measurements of electrokinetic potential. The AgI sol with positively charged particles is recharged and the electrokinetic potential of the AgI sol with negatively charged particles increases with a simultaneous increase in the aggregative stability of the sols in the presence of the polyanion – N-succinyl chitosan. Using potentiometric titration have shown that the increase in the aggregative stability of silver iodide sols at higher concentrations of chitosan acetate and chitosan N-succinyl is more associated not with the adsorption of macromolecules on the sol surface, but with an increase in the viscosity of solution with increasing polymer concentration (structural-mechanical barrier according to Rehbinder). Data of optical spectroscopy and viscometry indicate that the mixing of silver iodide sols with solutions of polymers of chitosan acetate and N-succinyl chitosan is accompanied by the formation of stable polymer-colloidal dispersions, the components of which interact with each other, and do not represent mechanical mixtures of a polymer solution and a colloidal solution.

全文:

受限制的访问

作者简介

M. Bazunova

Federal State Budgetary Educational Institution of Higher Education «Ufa University of Science and Technology»

编辑信件的主要联系方式.
Email: mbazunova@mail.ru
俄罗斯联邦, Ufa

V. Chernova

Federal State Budgetary Educational Institution of Higher Education «Ufa University of Science and Technology»

Email: mbazunova@mail.ru
俄罗斯联邦, Ufa

E. Kulish

Federal State Budgetary Educational Institution of Higher Education «Ufa University of Science and Technology»

Email: mbazunova@mail.ru
俄罗斯联邦, Ufa

参考

  1. A.B. Shcherbakov, G.I. Korchak, E. V. Surmasheva, et al., Farmacevticheskij zhurnal 5, 45 (2006). (in Russian). https://www.researchgate.net/publication/321754788_Preparaty_serebra_vcera_segodna_i_zavtra
  2. Rasulov B.A., Jun L.W., Davranov K.D. Microbiol. 86 (2), 197 (2017). https://doi.org/10.1134/S0026261717020175
  3. F.P. Sidel’kovskaya. Himiya N-vinilpirrolidona i ego polimerov. M.: Nauka, 1970. (in Russian).
  4. E.M. Blagitko, P.P. Rodionov, N.V. Bugajchenko, et al. Ointment “Hidropent” For Treatment Of Infected Wound, RU 2233652 C1 (2004). (in Russian).
  5. M.A. O’Neill, G.J. Vine, A.E. Beezer, et al., Int. J. Pharm. 263 (1), 61 (2003). https://doi.org/10.1016/s0378-5173(03)00361-2
  6. Furr J.R., Russell, A.D., Turner T.D., Andrews A., J. Hospital Infection. 27 (3), 201 (1994). https://doi.org/10.1016/0195-6701(94)90128-7
  7. A.B. Lansdown, K. Jensen, M.Q. Jensen, J. Wound Care. 12 (6), 205 (2003). https://doi.org/10.12968/jowc.2003.12.6.26507
  8. S. Thomas, P. McCubbin, J. Wound Care. 12 (6), 101 (2003). https://doi.org/10.12968/jowc.2003.12.3.26477
  9. Wright J.B., Lam K., Olson M.E., Burrell R.E., Wounds-A Compendium Of Clinical Research And Practice. 15 (5), 133 (2003). https://www.researchgate.net/publication/285942780_Is_antimicrobial_efficacy_sufficient_A_question_concerning_the_benefits_of_new_dressings
  10. G. Müller, Y. Winkler, A. Kramer, J. Hospital Infection. 53 (3), 211 (2003). https://doi.org/10.1053/jhin.2002.1369
  11. A.I. Slivkin, V.L. Lapenko, A.P. Arzamascev, A.A. Bolgov, Vest. Voronezh. gos. univer. Ser.: Him. Biol. Farmaciya. 2, 73 (2005). (in Russian). http://www.vestnik.vsu.ru/pdf/chembio/2006/01/ 2006-01-44.pdf
  12. Shurshina A.S., Galina A.R., Kulish E.I. Russ. J. Phys. Chem. B 16 (2), 353 (2022). https://doi.org/10.1134/S1990793122020221
  13. Shurshina A.S., Galina A.R., Lazdin R.Y., Chernova V.V., Kulish E.I. Russ. J. Phys. Chem. B 15 (4). 724. (2021). https://doi.org/10.1134/S1990793121040096
  14. Bazunova M.V., Mustakimov R.A., Kulish E.I. Russ. J. Phys. Chem. B 15 (5). 888. (2021) https://doi.org/10.1134/S199079312105002X
  15. Bazunova M.V., Mustakimov R.A., Kulish E.I. Russ. J. Phys. Chem. B 17 (1), 182 (2023). https://doi.org/10.1134/S1990793123010025
  16. M.V. Bazunova, R.Yu. Lazdin, M.R. Elinson, et al., Chimica Techno Acta. 9 (1), 20229108 (2022). https://doi.org/10.15826/chimtech.2022.9.1.08
  17. Lazdin R.Y., Chernova V.V., Bazunova M.V., et al., Russ. J. Appl. Chem. 93 (1), 65 (2020). https://doi.org/10.1134/S1070427220010073
  18. M.V. Bazunova, R.YU. Lazdin, M.A. Elinson, et al., Butler. soobshch. 60 (10), 42 (2019). (in Russian). ROI: jbc-01/19-60-10-42
  19. Laboratornye raboty i zadachi po kolloidnoj himii / Pod red. YU. G. Frolova and A.S. Grodskogo. M.: Himiya,1986. (in Russian).
  20. V.I. Klenin, Termodinamika sistem s gibkocepnymi polimerami. Saratov: Izd-vo Saratovskogo un-ta (1995). (in Russian).
  21. V.I. Klenin, S.YU. SHCHegolev, V.I. Lavrushin, Harakteristicheskie funkcii svetorasseyaniya dispersnyh sistem. Saratov: Izd-vo Saratovskogo un-ta, (1977). (in Russian).
  22. Varekhov A.G. Method for determining the electrokinetic potential of colloidal particles, RU 1658042 C1 (1991). (in Russian).
  23. G.K. Budnikov, V.N. Majstrenko, M.R. Veselov, Osnovy sovremennogo elektrohimicheskogo analiza. M.: Binom (2003). (in Russian).
  24. Baranov V.G., Amribakhshov D.Kh., Agranova S.A., Frenkel S. Ya., High-molecular compounds. Ser. B 30 (5), 384 (1988) (in Russian). http://polymsci.ru/static/Archive/1988/VMS_1988_T30ks_5/VMS_1988_T30ks_5_384-386.pdf
  25. M. V. Bazunova, D. R. Valiev, Y. S. Zamula, et al., Russ. J. Phys. Chem. B 11 (3), 513 (2017). https://doi.org/10.1134/S1990793117030174
  26. I.M. Solomenceva, A.A. Baran, O.D. Kurilenko, Fiziko-himicheskaya mekhanika i liofil’nost’ dispersnyh sistem. Kiev: Naukova Dumka (1975). (in Russian).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of the time of loss of stability of AgI-1 (1) and Age-2 (2) sols on the concentration of AHZ.

下载 (105KB)
3. Fig. 2. Dependence of the time of loss of stability of sol AgI-1 (2) and Age-2 (1) on the concentration of CPT.

下载 (107KB)
4. Rhys. 3. The dependence of EMF (E) on the activity of iodide ions: 1-solvent KI; 2-solvent KI + AgNO3; 3-solvent KI + AgNO3 + AHTZ (polymer concentration of 1%).

下载 (29KB)
5. 4. Dependence of the optical density (D) of the aqueous dispersions of AHTZ – sol AgI-1 (1) and SHTZ – sol AgI-1 (2) on the volume ratio of the initial components of the mixture. The polymer concentration in the solution was 1%.

下载 (25KB)
6. 5. Dependence of the optical density (D) of the aqueous dispersions of AHTZ – sol AgI-2 (1) and SHTZ – sol AgI-2 (2) on the volume ratio of the initial components of the mixture. The polymer concentration in the solution was 1%.

下载 (30KB)

版权所有 © Russian Academy of Sciences, 2024