Impurity Ions Mn2+ and Fe3+ as Paired Spin Labels for the Study of Structural Transformations in Phyllosilicates by the ESR Method

详细

Impurity paramagnetic ions Mn2+ and high spin Fe3+ (S = 5/2) are shown to be very informative “paired spin labels” to investigate structural transformations in natural aluminosilicate clay minerals by ESR spectroscopy. Second derivative ESR (SD ESR) enables to detect minor narrow lines of the ions against the background of intense broad lines of other paramagnetic impurities. Complex SD ESR spectra of the ions are explained by the Jahn-Teller effect and hyperfine interactions with OH-groups. SD ESR spectra before and after heating (620°C and 900°C) proved transformations of octahedral crystal cells accompanied by the loss of the OH-groups, displacement of the ions to equivalent positions.

全文:

受限制的访问

作者简介

A. Chetverikova

Orenburg State University

编辑信件的主要联系方式.
Email: kr-727@mail.ru
俄罗斯联邦, Orenburg

V. Berdinsky

Orenburg State University

Email: kr-727@mail.ru
俄罗斯联邦, Orenburg

O. Kanygina

Orenburg State University

Email: kr-727@mail.ru
俄罗斯联邦, Orenburg

E. Alidzhanov

Orenburg State University

Email: kr-727@mail.ru
俄罗斯联邦, Orenburg

A. Nikiyan

Orenburg State University

Email: kr-727@mail.ru
俄罗斯联邦, Orenburg

参考

  1. Bleam W.F. Soil and Environmental Chemistry. 2nd edition. Academic Press, 2016. Ch. 3. P. 87; https://doi.org/10.1016/B978-0-12-804178-9.00003-3
  2. Schoonheydt R., Johnston C.T., Bergaya F. // Dev. Clay Sci. 2018. V. 9. P. 1; https://doi.org/10.1016/B978-0-08-102432-4.00001-9
  3. Bailey S.W. // Clays Clay Miner. 1972. V. 20. P. 381; https://doi.org/10.1346/CCMN.1972.0200606
  4. Yavuz F., Kumral Y.F., Karakaya M., Karakaya N.C., Yildirim M. // Comput. Geosciences. 2015. V. 81. P. 101; https://doi.org/81.10.1016/j.cageo.2015.04.011
  5. Solodovnikov S.F. // J Struct Chem, 55, 1191 (2014). https://doi.org/10.1134/S0022476614070014
  6. Osipov V.I., Sergeev E.M. // Bull. Intern. Assoc. Eng. Geol. 1972. V. 5. P. 9; https://doi.org/10.1007/BF02634646
  7. Lund A., Masaru S., Shigetaka S. Principles and Applications of ESR Spectroscopy. Dordrecht: Springer, 2011; https://doi.org/10.1007/978-1-4020-5344-3
  8. Bortnikov N.S., Mineeva R.M., Novikov V.M. et al. // Doklady Earth Sciences. 2010. V. 433(1). P. 927; https://doi.org/10.1134/S1028334X10070184
  9. Hemanthkumar G.N., Parthasarathy G., Chakradhar R.P.S. et al. // Phys Chem Minerals. 2009. V. 36. P. 447; https://doi.org/10.1007/s00269-009-0291-5
  10. McBride M.B. // Clays Clay Miner. 1976. V. 24. P. 88; https://doi.org/10.1346/CCMN.1976.0240207
  11. Berliner L.J., Reuben J. Spin Labeling: Theory and Applications. New-York, Plenum Press, 1978.
  12. Vasserman A.M., Kovarsky A.L. Spin labels and probes in the physicochemistry of polymers [Spinovyye metki i zondy v fizikokhimii polimerov in Rus], edited by A.L. Buchachenko. Moscow. Science, 1986.
  13. Parmon V.N., Kokorin A.I., Zhidomirov G.M. Stable Biradicals [Stabil’nyye biradikaly in Rus], Ed. A.L. Buchachenko. Moscow. Science, 1980.
  14. Kokorin A.I., Putnikov A.E., Gromov O.I. et al. // Russian Journal of Physical Chemistry B. 2021. Vol. 15. No 2. P. 212. https://doi.org/10.1134/S1990793121020068
  15. Shuvarakova E.I., Bedilo A.F., Kenzhin R.M., Ilyina E.V., Gerus Y.Y. // Russian Journal of Physical Chemistry. B. 2022. V. 16(3). Р. 411; https://doi.org/10.1134/S199079312203023X
  16. Kytin V.G.,. Duvakina A.V,. Konstantinova E.A, Ovchenkov E.A., Korsakov I.E., Kupriianov E.E., Kulbachinskii V.A. // Russian Journal of Physical Chemistry B. 2022. V. 16(3). Р. 421; https://doi.org/10.1134/S1990793122030186
  17. Simbirtseva G.V., Piven N.P.,. Babenko S.D. // Russian Journal of Physical Chemistry B. 2022. V. 16(2). Р. 323; https://doi.org/10.1134/S199079312202023
  18. Hall P. // Clay Miner. 1980. V. 15. № 4. P. 321; https://doi.org/10.1180/claymin.1980.015.4.01
  19. Babińska J., Dyrek K., Wyszomirski P. // Mineralogia Polonica. 2007. V. 38. № 2. P. 125; https://doi.org/10.2478/v10002-007-0021-x
  20. ISO 24235:2007(en). Fine ceramics (advanced ceramics, advanced technical ceramics) — Determination of particle size distribution of ceramic powders by laser diffraction method. (https://www.iso.org/obp/ui).
  21. ISO 21822:2019(en). Fine ceramics (advanced ceramics, advanced technical ceramics) — Measurement of iso-electric point of ceramic powder. (https://www.iso.org/obp/ui)
  22. ISO 13099-2:2012(en). Colloidal systems — Methods for zeta-potential determination — Part 2: Optical methods (https://www.iso.org/obp/ui)
  23. Chetverikova A.G. // Meas Tech. 2022. V. 64. Р. 936; https://doi.org/10.1007/s11018-022-02024-5
  24. Determination of Total Calcium and Magnesium Ion Concentration magnesium (canterbury.ac.nz), Interstate standard “Clay raw materials. Test methods”, GOST 21216-2014 [in Russian], Izd. standartov, Moscow (2015)
  25. Grim R.E. Applied Clay Mineralogy. McGraw-Hill, New York, USA, 1962, 422 p.
  26. Kanygina O.N., Berdinskii V.L., Filyak M.M. et al. // Tech. Phys. 2020. V. 65. Р. 1261; https://doi.org/10.1134/S1063784220080095
  27. Chen J., Min F., Liu L. et al. // Physicochem. Probl. Miner. Process. 2020. V. 56. P. 338.
  28. Shata S., Hesse R. // Can. Mineral. 1998. V. 36. P. 1525.
  29. Cui J., Zhang Z., Han F. // Appl. Clay Sci. 2020. V. 190. P. 105543; https://doi.org/10.1016/j.clay.2020.105543
  30. CMS Workshop Lectures. Clay Water Interface and its Rheological Implications / Eds. Guven N., Pollastro R.M. Boulder, Colorado (USA): The Clay Minerals Society, 1992. V. 4.
  31. Khatsrinov A.I., Kornilov A.V., Lygina T.Z. et al. // Inorg Mater. 2019. V. 55. Р. 1138; https://doi.org/10.1134/S0020168519110062
  32. Slay D., Charilaou M., Cao D. et al. // J. Appl. Phys. 2021. V. 130. № 11. P. 113902; https://doi.org/10.1063/5.0060769
  33. Worasith N., Goodman В.А., Neampan J. et al. // Clay Miner. 2011. V. 46. P. 539; https://doi.org/10.1180/claymin.2011.046.4.539
  34. Chetverikova A.G., Kanygina O.N., Makarov V.N., Berdinskiy V.L., Seregin M.M. // Ceramica. 2022. V. 68. № 388. P. 441; https://doi.org/10.1590/0366-69132022683883346
  35. Balan E., Allard T., Boizot B. et al. // Clays Clay Miner. 1999. V. 47. P. 605; https://doi.org/10.1346/CCMN.1999.0470507
  36. Chetverikova A.G., Kanygina O.N., Makarov V.N., Berdinskiy V.L., Seregin M.M. // Condensed Matter and Interphases. 2023. V. 25(2). Р. 482;
  37. Bortnikov N.S., Mineeva R.M., Soboleva S.V. // Doklady Earth Sciences. 2008. V. 422(1). Р. 1081; https://doi.org/10.1134/S1028334X08070179

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Atomic three-layer (T-O-T) structure of chlorite and elementary ideal octahedral lattice. The data are taken from [8].

下载 (267KB)
3. Fig. 2. Scattering of particles and their microaggregates (optical microscopy, reflection) in polymineral clay (a), individual particle with distinguishable layers (AFM scanning) (b).

下载 (187KB)
4. Fig. 3. X-ray fluorescence spectrum of the polymineral sample.

下载 (64KB)
5. Fig. 4. Diffractogram of polymineral clay, λCo = 0.17902 nm.

下载 (75KB)
6. Fig. 5. Overview EPR spectra of the clay sample in the initial state (a), after firing at temperatures 620 (b) and 900С (c): the g-factor values of the paramagnetic centers of iron and manganese are presented.

下载 (115KB)
7. Fig. 6. Second derivative EPR spectra of natural clay and diagrams of superfine interactions of Mn2+ ions. The values of the g-factor and the hyperfine interaction constant a are presented for three positions of ions inside the octahedral lattice of phyllosilicates.

下载 (122KB)
8. Fig. 7. Three positions of Mn2+ ions in the unit cell octahedron in the initial lattice (a); equilibrium position of Mn2+ ions in the unit cell octahedron after heating for 1 h at 900C (b).

下载 (100KB)
9. Fig. 8. EP EPR spectrum of clay after firing for 1 h at 900C and diagram of Mn2+ ions superfine interactions. The lower part of the figure shows the values of g-factor and STV constant, a.

下载 (81KB)

版权所有 © Russian Academy of Sciences, 2024