Influence of Internal Microarchitecture on the Shape of Individual Implants Made from Vinylidene Fluoride Copolymer by 3D Printing with High-Temperature Crystallization

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The healing potential of individual polymer implants for the reconstruction of extensive craniofacial
defects after cancer resection is largely determined by the internal architecture of the implant. The architecture
of an implant during polymer crystallization could affect the structure and shape of the implant at the
micro and macro levels. In this study, the relationship between the internal architecture (triply periodic minimum
surface structure (gyroid), cube, grid, and honeycomb) and shape changes of individual implants by
3D printing with a vinylidene fluoride-tetrafluoroethylene copolymer after crystallization is examined at a
filling density of 70%. Using the method of differential scanning calorimetry, it is established that crystallization
leads to the rearrangement of the crystalline structure of the implant into electrically active (ferroelectric)
crystalline phases. Moreover, the type of internal architecture affects the change in the shape of the
implant after crystallization. The results of the computed tomography show that structures with a triply periodic
minimum surface (gyroid) provide the minimal deformation of the implant during crystallization, which
makes such structures optimal for manufacturing implants for replacing bone defects in the zygomatic-orbital
complex.

Sobre autores

A. Vorobyev

National Research Tomsk Polytechnic University

Email: Ftoroplast@tpu.ru
Tomsk, Russia

D. Kulbakin

Tomsk National Research Medical Center, Russian Academy of Sciences

Email: Ftoroplast@tpu.ru
Tomsk, Russia

S. Chistyakov

National Research Tomsk Polytechnic University

Email: Ftoroplast@tpu.ru
Tomsk, Russia

A. Mitrichenko

Tomsk National Research Medical Center, Russian Academy of Sciences

Email: Ftoroplast@tpu.ru
Tomsk, Russia

G. Dubinenko

National Research Tomsk Polytechnic University

Email: Ftoroplast@tpu.ru
Tomsk, Russia

I. Akimchenko

National Research Tomsk Polytechnic University

Email: Ftoroplast@tpu.ru
Tomsk, Russia

A. Gogolev

National Research Tomsk Polytechnic University

Email: Ftoroplast@tpu.ru
Tomsk, Russia

E. Choynzonov

Tomsk National Research Medical Center, Russian Academy of Sciences

Email: Ftoroplast@tpu.ru
Tomsk, Russia

V. Bouznik

National Research Tomsk Polytechnic University

Email: Ftoroplast@tpu.ru
Tomsk, Russia

E. Bolbasov

National Research Tomsk Polytechnic University; Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: Ftoroplast@tpu.ru
Tomsk, Russia; Tomsk, Russia

Bibliografia

  1. Кульбакин Д.Е., Чойнзонов Е.Л., Буякова С.П. и др. // Голова и шея. 2018. V. 6. № 4. Р. 64. https://doi.org/10.25792/HN.2018.6.4.64-69
  2. Жуков А.М., Солодилов В.И., Третьяков И.В., Буракова Е.А., Юрков Г.Ю. // Хим. физика. 2022. Т. 49. № 1. С. 64; https://doi.org/10.31857/S0207401X22090138
  3. Иванова Т.А., Голубева Е.Н. // Хим. физика. 2022. Т. 41. № 6. С. 35; https://doi.org/10.31857/S0207401X2206005X
  4. Тертышная Ю.В., Лобанов А.В., Хватов А.В. // Хим. физика. 2020. Т. 39. № 11. С. 52; https://doi.org/10.31857/S0207401X20110138
  5. Badaraev A.D., Koniaeva A., Krikova S.A. et al. // Appl. Surf. Sci. 2020. V. 504; https://doi.org/10.1016/j.apsusc.2019.144068
  6. Akimchenko I.O., Dubinenko G.E., Rutkowski S. et al. // Appl. Phys. Lett. 2021. V. 119. № 20; https://doi.org/10.1063/5.0070365
  7. Kapat K., Shubhra Q.T.H., Zhou M. et al. // Adv. Funct. Mat. 2020. V. 30. № 44; https://doi.org/10.1002/adfm.201909045
  8. Kochervinskii V.V. // Russ. Chem. Rev. 1996. V. 65. № 10. P. 936; https://doi.org/10.1070/RC1996v065n10ABEH000328
  9. Li Y., Tang S., Pan M.W. et al. // Macromolecules. 2015. V. 48. № 23. P. 8565; https://doi.org/10.1021/acs.macromol.5b01895
  10. Inoue M., Tada Y., Suganuma K. et al. // Polym. Degrad. Stabil. 2007. V. 92. P. 1833; https://doi.org/10.1016/j.polymdegradstab.2007.07.003
  11. Lovinger A.J., Johnson G.E., Bair H.E. et al. // J. Appl. Phys. 1984. V. 56. P. 2412; https://doi.org/10.1063/1.334303
  12. Murata Y. // Polym. J. 1987. V. 19. P. 337; https://doi.org/10.1295/polymj.19.337
  13. Rammohan A.V., Lee T., Tan V.B.C. // Intern. J. Appl. Mech. 2015. V. 7. № 3; https://doi.org/10.1142/S1758825115500489
  14. Dong Z., Zhao X. // Eng. Regen. 2021. V. 2. P. 154; https://doi.org/10.1016/j.engreg.2021.09.004

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (753KB)
3.

Baixar (1MB)
4.

Baixar (70KB)
5.

Baixar (1MB)
6.

Baixar (1MB)
7.

Baixar (1MB)

Declaração de direitos autorais © А.О. Воробьев, Д.Е. Кульбакин, С.Г. Чистяков, А.Д. Митриченко, Г.Е. Дубиненко, И.О. Акимченко, А.С. Гоголев, Е.Л. Чойнзонов, В.М. Бузник, Е.Н. Больбасов, 2023