Mathematical Model of the Ignition of a Gel Fuel Particle in a High-Temperature Air Medium

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using the results of previous experimental research, a mathematical model of ignition is developed for a typical gel fuel combustible particle, based on an organic polymer thickener, in a high-temperature air medium. The mathematical model of the studied process is developed using the mathematical tools of continuum mechanics and chemical kinetics. It describes a process corresponding to the limiting regime in which the characteristic heating times of the fuel and the resulting gas-vapor mixture are much longer than the characteristic times of the chemical reaction of the fuel and oxidizer in a gaseous medium. Satisfactory results of the verification of the mathematical model and numerical algorithm make it possible to conclude that this approach can be used to reliably predict the ignition characteristics of such types of gel fuels. The ignition delay times range from 0.3 to 10.0 s for single particles of gel fuel 0.25–2.00 mm in size, heated in air at temperatures of 750 to 1473 K.

Sobre autores

D. Glushkov

National Research Tomsk Polytechnic University, Tomsk, Russia

Email: kkp1@tpu.ru
Россия, Томск

K. Paushkina

National Research Tomsk Polytechnic University, Tomsk, Russia

Email: kkp1@tpu.ru
Россия, Томск

A. Pleshko

National Research Tomsk Polytechnic University, Tomsk, Russia

Autor responsável pela correspondência
Email: kkp1@tpu.ru
Россия, Томск

Bibliografia

  1. Mishra D.P., Patyal A., Padhwal M. // Fuel. 2011. V. 90. № 5. P. 1805.
  2. Solomon Y., Natan B., Cohen Y. // Combust. and Flame. 2009. V. 156. № 1. P. 261.
  3. Vershinina K.Y., Glushkov D.O., Nigay A.G. et al. // Ind. Eng. Chem. Res. 2019. V. 58. № 16. P. 6830.
  4. Rapp D.C., Zurawski R.L. // Pros. 24th Joint Propulsion Conf. Boston, Massachusetts, USA: American Institute of Aeronautics and Astronautics, 1988. P. 1.
  5. Hodge K.F., Crofoot T.A., Nelson S. // Pros. 35th Joint Propulsion Conf. Reston, Virigina, USA: American Institute of Aeronautics and Astronautics, 1999. P. 1.
  6. Varma M., Pein R. // Intern. J. Energ. Mater. Chem. Propuls. 2009. V. 8. № 6. P. 501.
  7. Caldas Pinto P., Hopfe N., Ramsel J. et al. // Pros. 7th Europ. conf. for aeronautics and space sciences (EUCASS). Milan, Italy: EUCASS association, 2017. P. 1.
  8. Hassid S., Natan B. // J. Propuls. Power. 2013. V. 29. № 6. P. 1337.
  9. Nave O., Bykov V., Gol’Dshtein V. et al. // Fuel. 2011. V. 90. № 11. P. 3410.
  10. He B., Nie W., Feng S. et al. // Propellants, Explos. Pyrotech. 2013. V. 38. № 5. P. 665.
  11. Guan H.-S., Li G.-X., Zhang N.-Y. // Acta Astronaut. 2018. V. 144. P. 119.
  12. Jyoti B.V.S., Naseem M.S., Baek S.W. et al. // Combust. and Flame. 2017. V. 183. P. 102.
  13. von Kampen J., Alberio F., Ciezki H.K. // Aerosp. Sci. Technol. 2007. V. 11. № 1. P. 77.
  14. Лемперт Д.Б., Казаков А.И., Дорофеенко Е.М. и др. // Хим. физика. 2020. Т. 39. № 7. С. 17.
  15. Glushkov D.O., Kuznetsov G. V., Nigay A.G. et al. // J. Energy Inst. 2019. V. 92. № 6. P. 1944.
  16. Glushkov D.O., Nigay A.G., Yanovsky V.A. et al. // Energy and Fuels. 2019. V. 33. № 11. P. 11812.
  17. Glushkov D.O., Pleshko A.O., Yashutina O.S. // Intern. J. Heat Mass Transf. 2020. V. 156. P. 119895.
  18. Glushkov D.O., Kuznetsov G.V., Nigay A.G. et al. // Powder Technol. 2020. V. 360. P. 65.
  19. Глушков Д.О., Кузнецов Г.В., Стрижак П.А. // Хим. физика. 2014. Т. 33. № 4. С. 38.
  20. Glushkov D.O., Paushkina K.K., Pleshko A.O. et al. // Fuel. 2022. V. 313. P. 123024.
  21. Reid R.C., Sherwood T.K., Street R.E. // Phys. Today. 1959. V. 12. № 4. P. 38.
  22. Юренев В.Н., Лебедев П.Д. Теплотехнический справочник. Т. 1. М.: Энергия, 1975.
  23. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. М.: ООО “Старс”, 2006.
  24. Штехер М.С. Топлива и рабочие тела ракетных двигателей. М.: Машиностроение, 1976.
  25. Щетинков Е.С. Физика горения газов. М.: Наука, 1965.
  26. Глушков Д.О., Кузнецов Г.В., Стрижак П.А. и др. Гелеобразные топлива: приготовление, реология, распыление, горение. Новосибирск: СО РАН, 2020.
  27. Вершинина К.Ю., Глушков Д.О., Кузнецов Г.В. и др. // Химия твердого топлива. 2016. № 2. С. 21.
  28. Лебедева Е.А., Астафьева С.А., Истомина Т.С. // Хим. физика. 2022. Т. 41. № 4. С. 24.
  29. Гудкова И.Ю., Зюзин И.Н., Лемперт Д.Б. // Хим. физика. 2022. T. 41. № 1. С. 34.
  30. Зюзин И.Н., Гудкова И.Ю., Лемперт Д.Б. // Хим. физика. 2020. Т. 39. № 9. С. 52.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (337KB)
3.

Baixar (180KB)
4.

Baixar (144KB)
5.

Baixar (163KB)
6.

Baixar (164KB)
7.

Baixar (67KB)

Declaração de direitos autorais © Д.О. Глушков, К.К. Паушкина, А.О. Плешко, 2023