The application of numerical inversion of the laplace transform to calculate the density of molecular states
- Авторлар: Adamson S.O.1, Kharlampidi D.D.2,3, Golubkov G.V.1,4, Dyakov Y.A.1, Morozov I.I.1, Olkhov O.A.1, Rodionov I.D.1, Rodionova I.P.1, Stepanov I.G.1, Shestakov D.V.1, Golubkov M.G.1
-
Мекемелер:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Moscow State Pedagogical University
- RUDN University
- National Research Center “Kurchatov Institute”
- Шығарылым: Том 44, № 5 (2025)
- Беттер: 3-14
- Бөлім: Элементарные физико-химические процессы
- URL: https://cijournal.ru/0207-401X/article/view/683908
- DOI: https://doi.org/10.31857/S0207401X25050014
- ID: 683908
Дәйексөз келтіру
Аннотация
To estimate the rate constants of monomolecular reactions using quasi-equilibrium statistical theory, information on the density of discrete states of molecules is required. In the present work, a new approach to calculating the density of discrete states of stable molecules and transition complexes is proposed, which is based on the numerical inversion of the Laplace transform. To test the method, the calculations of model systems including H₂O, NH₃, CD4 and с-C₃H₆ molecules were carried out. It is shown that at energies less than 200 kcal/mol, the relative error in calculating the density of discrete states does not exceed 0.5%. The results obtained by this method can be used, for instance, to estimate the rate constants of reactions involving organic radicals formed in the troposphere and tropopause.
Толық мәтін

Авторлар туралы
S. Adamson
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: sergey.o.adamson@gmail.com
Ресей, Moscow
D. Kharlampidi
Moscow State Pedagogical University; RUDN University
Email: sergey.o.adamson@gmail.com
Ресей, Moscow; Moscow
G. Golubkov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; National Research Center “Kurchatov Institute”
Email: sergey.o.adamson@gmail.com
Ресей, Moscow; Moscow
Y. Dyakov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: sergey.o.adamson@gmail.com
Ресей, Moscow
I. Morozov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: sergey.o.adamson@gmail.com
Ресей, Moscow
O. Olkhov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: sergey.o.adamson@gmail.com
Ресей, Moscow
I. Rodionov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: sergey.o.adamson@gmail.com
Ресей, Moscow
I. Rodionova
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: sergey.o.adamson@gmail.com
Ресей, Moscow
I. Stepanov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: sergey.o.adamson@gmail.com
Ресей, Moscow
D. Shestakov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: sergey.o.adamson@gmail.com
Ресей, Moscow
M. Golubkov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: sergey.o.adamson@gmail.com
Ресей, Moscow
Әдебиет тізімі
- Morozov I.I., Vasiliev E.S., Volkov N.D. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 5. P. 877. https://doi.org/10.1134/S1990793122050220
- Adamson S.O., Kharlampidi D.D., Shtyrkova A.S. et al. // Atoms. 2023. V. 11. № 10. 132. https://doi.org/10.3390/atoms11100132
- Adamson S.O., Kharlampidi D.D., Shtyrkova A.S. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 627. https://doi.org/ 10.1134/S1990793124700192
- Vasiliev E.S., Volkov N.D., Karpov G.V. et al. // Russ. J. Phys. Chem. A. 2020. V. 94. № 10. P. 1484. https://doi.org/10.1134/S0036024420100295
- Vasiliev E.S., Volkov N.D., Karpov G.V. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. № 5. P. 789. https://doi.org/10.1134/S1990793121050213
- Vasiliev E.S., Karpov G.V., Shartava D.K. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 3. P. 388. https://doi.org/10.1134/S1990793122030113
- Morozov I.I., Vasiliev E.S., Butkovskaya N.I. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 5. P. 1091. https://doi.org/10.1134/S1990793123050251
- Dyakov Y.A., Adamson S.O., Butkovskaya N.I. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 682. https://doi.org/10.1134/S1990793124700179
- Asplund G., Grimvall A., Jonsson S. // Chemosphere. 1994. V. 28. № 8. P. 1467. https://doi.org/10.1016/0045-6535(94)90241-0
- Hoekstra E.J. // Chemosphere. 2003. V. 52. № 2. P. 355. https://doi.org/10.1016/S0045-6535(03)00213-3
- Smith D.J., Setser D.W., Kim K.C. et al. // J. Phys. Chem. 1977. V. 81. № 9. P. 898. https://doi.org/10.1021/j100524a019
- Ebrecht J., Hack W., Wagner H.G. // Ber. Bunsenges. Phys. Chem. 1989. V. 93. № 5. P. 619. https://doi.org/10.1002/bbpc.19890930520
- Markert F., Pagsberg P. // Chem. Phys. Lett. 1993. V. 209. № 5-6. P. 445. https://doi.org/10.1016/0009-2614(93)80115-6
- Marcus R.A., Rice O.K. // J. Phys. Colloid Chem. 1951. V. 55. № 6. P. 894. https://doi.org/10.1021/j150489a013
- Marcus R.A. // J. Chem. Phys. 1952. V. 20. № 3. P. 359. https://doi.org/10.1063/1.1700424
- Baer T., Mayer P.M. // J. Am. Soc. Mass Spectrom. 1997. V. 8. № 2. P. 103. https://doi.org/10.1016/S1044-0305(96)00212-7
- Troe J. // J. Chem. Soc. Faraday Trans. 1997. V. 93. № 5. P. 885. https://doi.org/10.1039/A606453A
- Wieder G.M., Marcus R.A. // J. Chem. Phys. 1962. V. 37. № 8. P. 1835. https://doi.org/10.1063/1.1733376
- Marcus R.A. // J. Chem. Phys. 1965. V. 43. № 8. P. 2658. https://doi.org/10.1063/1.1697191
- Rosenstock H.M., Wallenstein M.B, Wahrhaftig A.L. et al. // Proc. Natl. Acad. Sci. 1952. V. 38. № 8. P. 667. https://doi.org/10.1073/pnas.38.8.667
- Rosenstock H.M. // J. Chem. Phys. 1961. V. 34. № 6. P. 2182. https://doi.org/10.1063/1.1731842
- Mozurkewich M., Benson S.W. // J. Phys. Chem. 1984. V. 88. № 25. P. 6429. https://doi.org/10.1021/j150669a073
- Mozurkewich M., Lamb J.J., Benson S.W. // J. Phys. Chem. 1984. V. 88. № 25. P. 6435. https://doi.org/10.1021/j150669a074
- Lamb J.J., Mozurkewich M., Benson S.W. // J. Phys. Chem. 1984. V. 88. № 25. P. 6441. https://doi.org/10.1021/j150669a075
- Nordholm S. // Chem. Phys. 1989. V. 129. № 3. P. 371. https://doi.org/10.1016/0301-0104(89)85007-4
- Harrington R.E., Rabinovitch B.S., Diesen R.W. // J. Chem. Phys. 1960. V. 32. № 4. P. 1245. https://doi.org/10.1063/1.1730882
- Schneider F.W., Rabinovitch B.S. // J. Am. Chem. Soc. 1962. V. 84. № 22. P. 4215. https://doi.org/10.1021/ja00881a006
- Current J.H., Rabinovitch B.S. // J. Chem. Phys. 1963. V. 38. № 4. P. 783. https://doi.org/10.1063/1.1733764
- Haarhoff P.C. // Mol. Phys. 1963. V. 6. № 3. P. 337. https://doi.org/10.1080/00268976300100381
- Astholz D.C., Troe J., Wieters W. // J. Chem. Phys. 1979. V. 70. № 11. P. 5107. https://doi.org/10.1063/1.437352
- Stein S.E., Rabinovitch B.S. // J. Chem. Phys. 1973. V. 58. № 6. P. 2438. https://doi.org/10.1063/1.1679522
- Beyer T., Swinehart D.F. // Commun. ACM. 1973. V. 16. № 6. P. 379. https://doi.org/10.1145/362248.362275
- Rabinovitch B.S., Diesen R.W. // J. Chem. Phys. 1959. V. 30. № 3. P. 735. https://doi.org/10.1063/1.1730036
- Rabinovitch B.S., Current J.H. // J. Chem. Phys. 1961. V. 35. № 6. P. 2250. https://doi.org/10.1063/1.1732253
- Whitten G.Z., Rabinovitch B.S. // J. Chem. Phys. 1963. V. 38. № 10. P. 2466. https://doi.org/10.1063/1.1733526
- Thiele E. // J. Chem. Phys. 1963. V. 39. № 12. P. 3258. https://doi.org/10.1063/1.1734187
- Whitten G.Z., Rabinovitch B.S. // J. Chem. Phys. 1964. V. 41. № 6. P. 1883. https://doi.org/10.1063/1.1726175
- Tardy D.C., Rabinovitch B.S., Whitten G.Z. // J. Chem. Phys. 1968. V. 48. № 3. P. 1427. https://doi.org/10.1063/1.1668840
- Berblinger M., Schlier C. // J. Chem. Phys. 1992. V. 96. № 9. P. 6834. https://doi.org/10.1063/1.462572
- Lin S.H., Eyring H. // J. Chem. Phys. 1965. V. 43. № 6. P. 2153. https://doi.org/10.1063/1.1697098
- Tou J.C., Lin S.H. // J. Chem. Phys. 1968. V. 49. № 9. P. 4181. https://doi.org/10.1063/1.1670734
- Hoare M.R., Ruijgrok T.W. // J. Chem. Phys. 1970. V. 52. № 1. P. 113. https://doi.org/10.1063/1.1672655
- Hoare M.R. // J. Chem. Phys. 1970. V. 52. № 11. P. 5695. https://doi.org/10.1063/1.1672846
- Forst W. // Chem. Rev. 1971. V. 71. № 4. P. 339. https://doi.org/10.1021/cr60272a001
- Dubner H., Abate J. // J. ACM. 1968. V. 15. № 1. P. 115. https://doi.org/10.1145/321439.321446
- Hoare M.R., Pal P. // Mol. Phys. 1971. V. 20. № 4. P. 695. https://doi.org/10.1080/00268977100100661
- Bauer S.H. // J. Chem. Phys. 1939. V. 7. № 12. P. 1097. https://doi.org/10.1063/1.1750379
- Magee J.L., Hamill W.H. // J. Chem. Phys. 1959. V. 31. № 5. P. 1380. https://doi.org/10.1063/1.1730603
- Schlag E.W., Sandsmark R.A. // J. Chem. Phys. 1962. V. 37. № 1. P. 168. https://doi.org/10.1063/1.1732944
- Haarhoff P.C. // Mol. Phys. 1964. V. 7. № 2. P. 101. https://doi.org/10.1080/00268976300100871
- Forst W., Prášil Z., St. Laurent P. // J. Chem. Phys. 1967. V. 46. № 10. P. 3736. https://doi.org/10.1063/1.1840445
- Forst W. // J. Chem. Phys. 1968. V. 48. № 8. P. 3665. https://doi.org/10.1063/1.1669667
- Döntgen M. // AIP Adv. 2016. V. 6. № 9. 095318. https://doi.org/10.1063/1.4963921
- Lin S.H., Eyring H. // J. Chem. Phys. 1963. V. 39. № 6. P. 1577. https://doi.org/10.1063/1.1734483
- Kislov V.V., Nguyen T.L., Mebel A.M. et al. // J. Chem. Phys. 2004. V. 120. № 15. P. 7008. https://doi.org/10.1063/1.1676275
- Schlag E.W., Sandsmark R.A., Valance W.G. // J. Chem. Phys. 1964. V. 40. № 5. P. 1461. https://doi.org/10.1063/1.1725346
- Forst W., Práŝil Z. // J. Chem. Phys. 1969. V. 51. № 7. P. 3006. https://doi.org/10.1063/1.1672449
- Schmittroth L.A. // Commun. ACM. 1960. V. 3. № 3. P. 171. https://doi.org/10.1145/367149.367172
- Tolman R.C. The Principles of Statistical Mechanics. New York: Oxford University Press, 1938.
Қосымша файлдар
