Self-propagating high-temperature synthesis of high-entropy carbides and borides: features of combustion

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Recently, works have appeared devoted to the production and study of high-entropy ceramics (HEC), in particular, high-entropy carbides and high-entropy borides. It is assumed that the properties of HEC, due to the distortion of the crystal structure, will exceed the properties of one or two-component borides and carbides. Previously, HEC containing high-entropy carbide and high-entropy boride were obtained by mechanical alloying in a ball mill and electric spark plasma sintering. The strength of this two-phase HEC exceeded the average strength of the high-entropy carbide and high-entropy boride included in its composition. The effect of the ratio of components and compression of samples on the combustion velocity, elongation of samples, morphology and phase composition of synthesis products in the system х(Ti+Hf+Zr+Nb+Ta+5С) + (1 – х)(Ti+Hf+Zr+Nb+Ta+10В) is investigated. With an increase in the content of boron in the composition of mixtures, the combustion velocity of the samples increased. A significant influence of impurity gas release on the combustion process of samples was discovered. Combustion velocity of compressed samples has increased significantly. The elongation of the samples increased with an increase in the carbon content of the mixture. Due to the significant elongation, the synthesis products had high porosity, and powders were easily obtained from them. By the XRD method, reflexes of the high entropy diboride [Ti, Hf, Zr, Nb, Ta]B2 were recorded in the composition of the combustion products of the mixture Ti+Hf+Zr+Nb+Ta+10B. Three multi-element carbides have been identified in the composition of the synthesis products of the Ti+Hf+Zr+Nb+Ta+5C mixture: medium-entropy [Ti, Hf, Ta]C and two high-entropy [Ti, Hf, Zr, Ta]C and [Ti, Hf, Zr, Nb,Ta]C. The combustion products of a mixture of 50%(Ti+Hf+ +Zr+Nb+Ta+5C)+50%(Ti+Hf+Zr+Nb+Ta+10B) contain five multi-element high-entropy phases: two diborides and three carbides based on metal solid solutions.

In this work, high-entropy ceramics containing high-entropy carbides and borides were obtained for the first time using the SHS method. The SHS method allows synthesis to be carried out in one stage, varying the composition of the products. The results of the work can be used to obtain high-entropy ceramics in the system х(Ti+Hf+Zr+Nb+Ta+5С)+(1-х)(Ti+Hf+Zr+Nb+Ta +10В).

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Kochetov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Rus.Ac.Sci.

Хат алмасуға жауапты Автор.
Email: kolyan_kochetov@mail.ru
Ресей, Chernogolovka

Әдебиет тізімі

  1. A.E. Sytschev, S. G. Vadchenko, A.S. Shchukin, et al. Russ. J. Phys. Chem. B 16 (1), 167 (2022). https://doi.org/10.1134/S1990793122010158
  2. S.G. Vadchenko, M.I. Alymov. Russ. J. Phys. Chem. B 16 (2), 236 (2022). https://doi.org/ 10.1134/S1990793122020130
  3. B. Basu, G.B. Raju, A.K. Suri. Int. Mater. Rev. 51 (6), 352 (2006); https://doi.org/10.1179/174328006X102529
  4. D. Vallauri, I.C. Atías Adrián, A. Chrysanthou. J. Eur. Ceram. Soc. 28 (8), 1697 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.11.011
  5. A.S. Rogachev, A.S. Mukasyan. Combustion for Material Synthesis. New York: CRC Press,Taylor & Francis Group, 2015
  6. W.E. Fahrenholtz, E. Greg, G. E. Hilmas. Scripta Materialia. 129, 94 (2017). https://doi.org/10.1016/j.scriptamat.2016.10.018
  7. A.G. Akopyan, S.K. Dolukhanyan, I.P. Borovinskaya. Combust. Explos. Shock Waves. 14 (3), 327 (1978). https://doi.org/10.1007/BF00740497
  8. I.P. Borovinskaya, A.G. Merzhanov, N.P. Novikov, et al. Combust. Explos. Shock Waves. 10 (1), 2 (1974). https://doi.org/10.1007/BF01463777
  9. B. Cantor, I.T.H. Chang, P. Knight et al. Mater. Sci. and Eng.: A. 375, 213 (2004). https://doi.org/10.1016/j.msea.2003.10.257
  10. N.A. Kochetov, A.S. Rogachev, D. Yu. Kovalev, et al. Russian Journal of Non-Ferrous Metals. 62 (6), 716 (2021), https://doi.org/10.3103/S1067821221060110
  11. A.S. Rogachev, А. Fourmont, D.Yu. Kovalev et al. Powder Techn. 399. 117187 (2022). https://doi.org/10.1016/j.powtec.2022.117187
  12. Z. Zhang, H. Sheng, Z. Wang, et al. Nat. Commun. 8, 14390 (2017). https://doi.org/10.1038/ncomms14390
  13. G. Laplanche, A. Kostka, C. Reinhart, et al. Acta Mater. 128, 292 (2017). https://doi.org/10.1016/j.actamat.2017.02.036
  14. V. Braic, A. Vladescu, M. Balaceanu et al. Surf. Coat. Technol. 211, 117 (2012). https://doi.org/10.1016/j.surfcoat.2011.09.033
  15. X. Yan, L. Constantin, Y.F. Lu, et al. J. Am. Ceram. Soc. 101 (10), 4486 (2018). https://doi.org/10.1111/jace.15779
  16. D.O. Moskovskikh, S. Vorotilo, A.S. Sedegov, et al. Ceram. Int. 46 (11), 19008 (2020). https://doi.org/10.1016/j.ceramint.2020.04.230
  17. D.Yu. Kovalev, N.A. Kochetov, I.I. Chuev. Ceram. Int. 47 (23), 32626 (2021). https://doi.org/10.1016/j.ceramint.2021.08.158
  18. N.A. Kochetov, I.D. Kovalev. Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya. 16 (4), 58 (2022). [in Russian]. https://doi.org/10.17073/1997-308X-2022-4-58-66
  19. G. Tallarita, R. Roberta Licheri, S. Garroni et al. Scripta Mater. 158, 100 (2019). https://doi.org/10.1016/j.scriptamat.2018.08.039
  20. J. Gild, Y. Zhang, T. Harrington et al. Scientific Reports. 6, 37946 (2016). https://doi.org/10.1038/srep37946
  21. D. Liu, T. Wen, B. Ye, Y. Chu. Scripta Mater. 167, 110 (2019). https://doi.org/10.1016/j.scriptamat.2019.03.038
  22. N.A. Kochetov, A.S. Rogachev, I.D. Kovalev, S.G. Vadchenko. Int. J. Self-Propag. High-Temp. Synth. 30 (4), 223 (2021). https://doi.org/10.3103/S106138622104004X
  23. P.H. Mayrhofer, A. Kirnbauer, Ph. Ertelthaler, C.M. Koller. Scripta Mater. 149, 93 (2018). https://doi.org/10.1016/j.scriptamat.2018.02.008
  24. M. Qin, J. Gild, Ch. Hu, et al. J. Europ. Ceram. Soc. 40 (15), 5037 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.05.040
  25. B.M. Moshtaghioun, D. Gomez-Garcia, A. Dominguez-Rodriguez, R.I. Todd. J. Europ. Ceram. Soc. 36 (7), 1829 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.01.017
  26. A. Krell, P. Blank. J. Am. Ceram. Soc. 78 (4), 1118 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08452.x
  27. N.A. Kochetov. Russ. J. Phys. Chem. B 16 (4), 621 (2022). https://doi.org/10.1134/S1990793122040078
  28. N.A. Kochetov, B.S. Seplyarskii. Russ. J. Phys. Chem. B. 17 (2), 381 (2023). https://doi.org/10.1134/S1990793123020082
  29. N.A. Kochetov, B.S. Seplyarskii. Russ. J. Phys. Chem. B. 16 (1), 66 (2022). https://doi.org/10.1134/S1990793122010079.
  30. V.M. Shkiro, G.A. Nersisyan, I.P. Borovinskaya.Principles of combustion of tantalum-carbon mixtures Combust. Explos. Shock Waves. 14 (4), 455 (1978). https://doi.org/10.1007/BF00742950
  31. L.J. Kecskes, A. Niiler. J. Amer. Ceram. Soc. 72 (4), 655 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb06190.x
  32. V.A. Shcherbakov, A.E. Sychev, A.S. Shteinberg. Outgassing macrokinetcs in SPS. Combust. Explos. Shock Waves. 22 (4), 437 (1986). https://doi.org/10.1007/BF00862888
  33. O.K. Kamynina, A.S. Rogachev, A.E. Sytschev et al. Int. J. Self-Propag. High-Temp. Synth. 13 (3), 193 (2004).
  34. O.K. Kamynina, A.S. Rogachev, L.M. Umarov et al., Combust. Explos. Shock Waves, 39 (5), 548 (2003), https://doi.org/10.1023/A:1026161818701
  35. V.I. Vershinnikov, A.K. Filonenko. Combust. Explos. Shock Waves, 14 (5), 588 (1978). https://doi.org/10.1007/BF00789716
  36. B.S. Seplyarskii. Dokl. Phys. Chem. 396 (4–6), 130 (2004).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Dependence of the combustion rate of freely extending (■, solid line) and compressed samples (○, dashed line) on the content of 5Me+5C in the mixtures.

Жүктеу (28KB)
3. Fig. 2. Photographs of the synthesis products of samples pressed from the following mixtures: a – 5Me+10B, b – 25%(5Me + 5C) + 75%(5Me + 10B), c – 50% (5Me + 5C) + 50%((5Me + 10B), d – 75%(5Me + 5C) + 25%(5Me + 10B), d – 5Me +5C.

Жүктеу (318KB)
4. Fig. 3. Dependence of the relative elongation of samples during synthesis on the content of 5Me+5C in the mixtures.

Жүктеу (25KB)
5. Fig. 4. Photograph of the synthesis products of compressed samples (to prevent their elongation), pressed from the following mixtures: 1 – 5Me + 5C, 2 – 75%(5Me + 5C) + 25%(5Me + 10B), 3 – 50%(5Me + 5C) + 50%(5Me + 10B), 4 – 25%(5Me+5C) + 75%(5Me + 10B), 5 – 5Me + 10B.

Жүктеу (206KB)
6. Fig. 5. Results of X-ray phase analysis of the synthesis products of mixtures 5Me+10B, 50%(5Me+5C)+50%(5Me+10B), 5Me+5C. The reflex designations are as follows: 1, 2, 3, 5, 6, 8 – carbide phases based on solid metal solutions; 4, 7, 9 – diborides based on solid metal solutions; 10 – TaB2, 11 – NbB2.

Жүктеу (75KB)
7. Fig. 6. Microstructure of combustion products of a sample from a mixture of 5Me+5C.

Жүктеу (90KB)
8. Fig. 7. Microstructure of combustion products of a sample from a mixture of 50%(5Me+5C)+50%(5Me+10B).

Жүктеу (165KB)

© Russian Academy of Sciences, 2025