The effect of disordered perturbations on the entropy of an unstable system

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The contribution of disordered perturbations in density, velocity and pressure to the pair entropy of an unstable system, which sets the direction of its evolution, is estimated. Disordered perturbations arising in the incoming flow due to external influence are calculated by numerical integration of regular equations of multimoment hydrodynamics supplemented with stochastic components. The calculation of the distortion of the pair entropy of the system due to disordered perturbations is performed in the problem of flow around a stationary solid sphere. It is established that disordered perturbations of density, velocity and pressure do not have any noticeable effect on the parameters of the vortex street in the wake behind the sphere.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Lebed

Institute of Applied Mechanics of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: lebed-ivl@yandex.ru
Ресей, Moscow

Әдебиет тізімі

  1. I.V. Lebed, Russ. J. Phys. Chem. B 8(2), 240 (2014). A.Ph. Kiselev, I.V. Lebed, Chaos Solitons Fractals 142, №110491 (2021).
  2. I.V. Lebed, Russ. J. Phys. Chem. B 18(5), (2024).
  3. I.V. Lebed, Chem. Phys. Rep. 17(1–2), 411 (1998).
  4. I.V. Lebed, The Foundations of Multimoment Hydrodynamics, Part 1: Ideas, Methods andEquations (Nova Science Publishers, N-Y, 2018).
  5. I.V. Lebed, Chem. Phys. Rep. 16(4), 1263 (1997).
  6. A.Ph. Kiselev, I.V. Lebed, Russ. J. Phys. Chem. B 15(1), 189 (2021).
  7. I.V. Lebed, Russ. J. Phys. Chem. B 16(1), 197 (2022)
  8. H. Sakamoto, H. Haniu, J. Fluid Mech. 287, 151 (1995).
  9. L.G. Loitsyanskii, Mechanics of Liquids and Gases (Pergamon, Oxford, 1966).
  10. A.S. Monin, A.M. Yaglom, Statistical Hydromechanics, Part 1 (Nauka, Moscow, 1965)
  11. R. Natarajan and A. Acrivos, J. Fluid Mech. 254, 323 (1993).
  12. K.Hannemann, H. Oertel Jr., J. Fluid Mech. 199, 55 (1989).
  13. H.G. Schuster, Deterministic Chaos (Physik Verlag, Weinheim, 1984).
  14. A.G. Tomboulides and S.A. Orszag, J. Fluid Mech. 416, 45 (2000).
  15. D. Ruelle, F. Takens, Commun. Math. Phys. 20, 167 (1971).
  16. I.V. Lebed, Russ. J. Phys. Chem. B 17(6), 1414 (2023).
  17. A.A. Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, 1956).
  18. H.K. Moffatt, J. Fluid Mech.. 106, 27 (1981).
  19. I.V. Lebed, S.Y. Umanskii, Russ. J. Phys. Chem. B 1(1), 52 (2007).
  20. J.M. Chomaz, P. Bonneton, E.J. Hopfinger, J. Fluid Mech. 234, 1 (1993).
  21. A. Ph. Kiselev, I.V. Lebed, Russ. J. Phys. Chem. B 15(5), 895 (2021).
  22. I.V. Lebed, Russ. J. Phys. Chem. B 17(5), 1194 (2023).
  23. I.V. Lebed, Russ. J. Phys. Chem. B 16(2), 370 (2022).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Time behavior of the paired entropy calculated within the hemispherical concentric layer H0 minus the spatial half-segment; r2 = 2.12, r3= 1.0, Re=400, t*= 6.99.

Жүктеу (17KB)
3. Рис. 2. Hemispherical concentric layer H0: 1 ≤ ^r ≤ ^r2, p/2 ≤ q ≤ 0, 2p ≤ j ≤ 0; hemispherical concentric layer H1: 1 ≤ ^r ≤ ^r1, p/2 ≤ q ≤ 0, 2p ≤ j ≤ 0; hemispherical concentric layer H2: ^r1 ≤ ^r ≤ ^r2, p / 2 ≤ q ≤ 0, 2p ≤ j ≤ 0; cos a = 0.886.

Жүктеу (21KB)
4. Рис. 3. Введение во временную производственную систему, при Re = 400. Функция =^СП(0(0,2))(т)/=т, рассчитанная по решению Соль 0 в пределах полусферического концентрического слоя н0 за вычетом пространственного полусегмента, представлена кривой 1; ^Р2 = 2.12, ^Р3 = 1.0. Сумма двух функций, ^СП(0(1,2))(т) и ^ИП(1(2,2))(т), представлена кривой 2. Составляющая ^СП(0(1,2))(т) рассчитана по решению Sol0 в пределах полусферического концентрического слоя Н1 ^Р1 = 1.571; составляющая ^ИП(1(2,2))(т) рассчитана по решению Sol1 в пределах области существования решения, расположенной на внешней границе полусферического концентрического слоя Н1. Время перемещения ^t1 = 6,9857, t = (Rea/(2 U0))^t.

Жүктеу (21KB)
5. Fig. 4. Time behavior of the inverse pair entropy calculated by Sol0, Re = 400. The function ^S~p*(0(1,)2)(t*), calculated within the hemispherical concentric layer H1, is represented by curve 1; ^r1 =1.571. The function ^S~p*(0(0,)2)(t*), calculated within the hemispherical concentric layer H0 minus the spatial half-segment, is represented by curve 2; ^r2 = 2.12, ^r3 = 1.0. The function ^S~ p*(0(1–,2)2)( t*), calculated within a hemispherical concentric layer with a moving outer boundary ^r1(t), represented by curve 3. Rebuilding time ^t1 = 6.9857, separation time ^t1 = T = 6.99, t * = = (Re a/(2U0))^t *.

Жүктеу (27KB)

© Russian Academy of Sciences, 2024