Thermodynamic evaluation of hydrogen production modes during pyrolysis of ammonia in a filtration combustion moving bed reactor

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new process has been proposed for pyrolysis of ammonia in a filtration combustion moving bed reactor to produce hydrogen. The process can be implemented in reactors with energy recovery with separate supply of reagents (including swiss-roll reactor, etc.). The mass-energy balance of the process was calculated. The analysis of pyrolysis products was carried out under the condition of thermodynamic equilibrium with varying temperature and pressure. The system pressure varied from 1 to 10 bar. The temperature range from 300 to 1100 K was considered. It has been shown that ammonia pyrolysis ends at a temperature of 620 K at atmospheric pressure. An increase in pressure in the system led to a slight increase in the temperature of ammonia pyrolysis. The portion of hydrogen that needs to be burned to cover the energy for heating and pyrolysis of the initial ammonia in the case of an adiabatic reactor was 0.13. From one mole of ammonia it is possible to obtain 1.31 moles of hydrogen.

Full Text

Restricted Access

About the authors

E. A. Salgansky

FRC Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: sea@icp.ac.ru
Russian Federation, Chernogolovka

M. V. Salganskaya

FRC Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: sea@icp.ac.ru
Russian Federation, Chernogolovka

I. V. Sedov

FRC Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: sea@icp.ac.ru
Russian Federation, Chernogolovka

References

  1. M. Romanello, C. Napoli, C. Green et al., The Lancet. 402, 10419 (2023). https://doi.org/10.1016/S0140-6736(23)01859-7
  2. G. Krauklit, and K. Aghayeva, Sciences of Europe. 110, 77 (2023). https://doi.org/10.5281/zenodo.7618453
  3. M. Mohammadi, H. Jafari, M. Etemadi, et al., Disaster medicine and public health preparedness. 17, 558 (2023). https://doi.org/10.1017/dmp.2023.225
  4. N.V. Lobus, M.A. Knyazeva, A.F. Popova, et al., C-Journal of Carbon. 9 (4), 120 (2023). https://doi.org/10.3390/c9040120
  5. K. Lianwei, P. Weiguo, Z. Jaikai, et al., Fuel. 332, 126150 (2023). https://doi.org/10.1016/j.fuel.2022.126150
  6. C. Tao, Z. Dan, and G. Ephraim, Chem. Eng. J. 458, 141391 (2023). https://doi.org/10.1016/j.cej.2023.141391
  7. Yu.V. Maksimov, V.K. Imshennik, S.V. Novichikhin, et al., Russ. J. Phys. Chem. B 17, 620 (2023). https://doi.org/10.1134/S1990793123030089
  8. S.M. Yunusov, E.S. Kalyuzhnaya, V.B. Shura, et al., Russ. Chem. Bull. 60 (9), 1842 (2011). https://doi.org/10.1007/s11172-011-0278-5
  9. S. Nithya, A. Chinnathambi, S. Ali Alharbi, et al., Fuel. 361, 130628 (2024). https://doi.org/10.1016/j.fuel.2023.130628
  10. V.F. Zakaznov, L.A. Kursheva, and Z.I. Fedina, Combust. Explos. Shock Waves. 14 (6), 710 (1978). https://doi.org/10.1007/BF00786097
  11. C. Lhuillier, P. Brequigny, N. Lamoureux, et al., Fuel. 263, 116653 (2020). https://doi.org/10.1016/j.fuel.2019.116653
  12. V.V. Kalinchak, A.S. Chernenko, V.V. Kulagin, et al., Khimicheskaya fizika. 35 (2), 61 (2016). https://doi.org/10.7868/S0207401X16020060
  13. Y. Tang, D. Xie, B. Shi, et al., Fuel. 313, 122674 (2022). https://doi.org/10.1016/j.fuel.2021.122674
  14. A. Valera-Medina, M.O. Vigueras-Zuniga, H. Shi, et al., Int. J. Hydrog. Energy. 49, 1597 (2024). https://doi.org/10.1016/j.ijhydene.2023.10.241
  15. M. Kovaleva, A. Hayakawa, S. Colson, et al., Fuel Commun. 10, 100054 (2022). https://doi.org/10.1016/j.jfueco.2022.100054
  16. A. Alfazazi, E. Es-sebbar, X. Zhang, et al., Appl. Energy Combust. Sci. 12, 100099 (2022). https://doi.org/10.1016/j.jaecs.2022.100099
  17. K.P. Shrestha, B.R. Giri, A.M. Elbaz, et al., Fuel Commun. 10, 100051 (2022). https://doi.org/10.1016/j.jfueco.2022.100051
  18. P. Ronan, B. Pierre, M.R. Christine, et al., Fuel Commun. 10, 100052 (2022). https://doi.org/10.1016/j.jfueco.2022.100052
  19. J.S. Cardoso, V. Silva, J.A.M. Chavando, et al., Fuel Commun. 10, 100055 (2022). https://doi.org/10.1016/j.jfueco.2022.100055
  20. B. Mei, J. Zhang, X. Shi, et al., Combust. Flame. 231, 111472 (2021). https://doi.org/10.1016/j.combustflame.2021.111472
  21. K. Ryu, G.E. Zacharakis-Jutz, and S.C. Kong, Int. J. Hydrog. Energy. 39 (5), 2390 (2014). https://doi.org/10.1016/j.ijhydene.2013.11.098
  22. S.S. Gill, G.S. Chatha, A. Tsolakis, et al., Int. J. Hydrog. Energy. 37 (7), 6074 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.137
  23. A. Mercier, C. Mounaïm-Rousselle, P. Brequigny, et al., Fuel Commun. 11, 100058 (2022). https://doi.org/10.1016/j.jfueco.2022.100058
  24. O.S. Rabinovich, A.I. Malinouski, V.M. Kislov, et al., Combust. Theor. Model. 20 (5), 877 (2016). https://doi.org/10.1080/13647830.2016.1190034
  25. L. Jiaxin, Y. Guangyao, W. Shixuan, et al., Fuel. 349, 128740 (2023). https://doi.org/10.1016/j.fuel.2023.128740
  26. M.A. Mujeebu, Appl. Energy. 173, 210 (2016). https://doi.org/10.1016/j.apenergy.2016.04.018
  27. B.G. Trusov, Proceedings of the 14th International Conference on Chemical Thermodynamics (NIIKh SPbGU, St. Petersburg). 483 (2002).
  28. V.V. Petrov, Y.N. Varzarev, A.P. Starnikova, and Kh.A. Abdullin, Russ. J. Phys. Chem. B 14, 117 (2020). https://doi.org/10.1134/S199079312001025X
  29. F.F. Tabrizi, S. Mousavi, and H. Atashi, Energy Convers. Manag. 103, 1065 (2015). https://doi.org/10.1016/j.enconman.2015.07.005
  30. A.M. Tereza, S.P. Medvedev, and V.N. Smirnov, Acta Astronaut. 176, 653 (2020). https://doi.org/10.1016/j.actaastro.2020.03.045
  31. A.M. Tereza, and E.K. Anderzhanov, Russ. J. Phys. Chem. B 13, 626 (2019). https://doi.org/10.1134/S1990793119040262
  32. A.M. Tereza, P.V. Kozlov, G.Y. Gerasimov, et al., Acta Astronaut. 204, 705 (2023). https://doi.org/10.1016/j.actaastro.2022.11.001
  33. E.A. Salgansky, A.Yu. Zaichenko, D.N. Podlesniy, et al., Fuel. 210, 491 (2017). https://doi.org/10.1016/j.fuel.2017.08.103
  34. M. Toledo, A. Arriagada, N. Ripoll, et al., Renewable Sustainable Energy Rev. 177, 113213 (2023). https://doi.org/10.1016/j.rser.2023.113213
  35. M.V. Salganskaya, S.V. Glazov, E.A. Salganskii, et al., Russ. J. Phys. Chem. B 2 (1), 71 (2008). https://doi.org/10.1134/S1990793108010119
  36. M.V. Tsvetkov, and E.A. Salganskii, Russ. J. Appl. Chem. 91 (7), 1129 (2018). https://doi.org/10.1134/S1070427218070108
  37. M.V. Grishin, A.K. Gatin, V.G. Slutsky, et al., Russ. J. Phys. Chem. B 12, 937 (2018). https://doi.org/ 10.1134/S1990793118050068

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of a filtration combustion reactor with a moving bed of coolant with separate supply of reagents.

Download (26KB)
3. Fig. 2. Dependences of the volumetric content of gaseous products of ammonia pyrolysis (1 – NH3, 2 – H2, 3 – N2) on temperature at different pressures: a – 1, b – 5, c – 10 bar.

Download (37KB)
4. Fig. 3. Dependence of the temperature of complete pyrolysis of ammonia (T*) on pressure (P).

Download (7KB)

Copyright (c) 2024 Russian Academy of Sciences