The structure of tetranuclear zirconium pivalate ZR4O2 [(CH3)3CCO2]12 according to X-ray diffraction analysis and quantum chemical calculations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The crystal and molecular structure of a polynuclear pivalate complex obtained by the interaction of ZrCl4 with pivalic acid was determined by X-ray diffraction analysis. The compound C71H124O28Zr4 (compound 1) crystallizes in the monoclinic crystal system. The crystal structure was refined in the nonstandard space group I2. The asymmetric part of the structure includes three Zr atoms, six pivalate ligands, a bridging µ3-O oxygen atom, as well as disordered crystallization molecules of pivalic acid with an occupancy of 50% and benzene with an occupancy of 50%. The zirconium complex molecule is a tetranuclear cluster that contains three types of Zr atoms that differ in ligand environment. Comparison of the results of quantum chemical calculations of the model reaction ZrCl4 with acetic acid with the literature data on reactions of ZrCl4 with aliphatic acids have shown the possibility of the formation of both mononuclear Zr(RCO2)4 and polynuclear clusters in this reaction, which is a new route for obtaining polynuclear zirconium clusters. The structure of the clusters formed depends on the steric properties of carboxylate ligands.

Full Text

Restricted Access

About the authors

V. D. Makhaev

Federal Research Center of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: vim@icp.ac.ru
Russian Federation, Chernogolovka

L. A. Petrova

Federal Research Center of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: vim@icp.ac.ru
Russian Federation, Chernogolovka

G. V. Shilov

Federal Research Center of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: vim@icp.ac.ru
Russian Federation, Chernogolovka

K. V. Bozhenko

Federal Research Center of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: vim@icp.ac.ru
Russian Federation, Chernogolovka

A. N. Utenyshev

Federal Research Center of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: vim@icp.ac.ru
Russian Federation, Chernogolovka

S. M. Aldoshin

Federal Research Center of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: vim@icp.ac.ru
Russian Federation, Chernogolovka

References

  1. R. C. Mehrotra, R. Bohra, Metal Carboxylates. London: Academic Press, (1983).
  2. J. Ludvig, D. Schwarz, Inorg. Chem. 9, 607 (1970). https://doi.org/10.1021/ic50085a034
  3. G. Kickelbick, U. Schubert, Chem. Ber. Recueil. 130, 473 (1997). https://doi.org/10.1002/cber.19971300406
  4. P. Piszczek, A. Radtke, A. Grodzicki, A. Wojtczak, J. Chojnacki, Polyhedron. 26, 679 (2007). https://doi.org/10.1016/j.poly.2006.08.025
  5. J. H. Cavka, S. Jakobsen, U. Olsbye, et al., J. Am. Chem. Soc. 130, 13850 (2008). https://doi.org/10.1021/ja8057953
  6. Z. Chen, S.L. Hanna, L.R. Redfern, et al., Coord. Chem. Rev. 386, 32 (2019). https://doi.org/10.1016/j.ccr.2019.01.017
  7. T. Frot, S. Cochet, G. Laurent, et al., Eur. J. Inorg. Chem. 36, 5650 (2010). https://doi.org/10.1002/ejic.201000807
  8. E. Comyns. Encyclopedic Dictionary of Named Processes in Chemical Technology. Fourth Edition. Boca Raton, London, New York: CRC Press Inc. (2014).
  9. K. Mishra. Smart Ceramics: Preparation, Properties, and Applications. Singapore: Jenny Stanford Publishing, (2018) ISBN 1351671642.
  10. T. Sugimoto. Monodispersed Particles. 2nd Edition. Amsterdam: Elsevier (2019). ISBN 9780444627490
  11. T. J. Boyle, L. A. M. Ottley, M. A. Rodriguez. Polyhedron. 24, 1727 (2005). https://doi.org/10.1016/j.poly.2005.05.005
  12. J. J. Schneider, R. C. Hoffmann, A. Issanin, S. Dilfer. Mater. Sci. Eng.: B. 176, 965 (2011). https://doi.org/10.1016/j.mseb.2011.05.024
  13. Xue Wang, Meng Sun. Int. J. Electrochem. Sci. 16, 210530 (2021). https://doi.org/10.20964/2021.05.42
  14. M. Salehipour, S. Rezaei, M. Rezaei, M. Yazdani, M. Mogharabi-Manzari, J. Inorg. Organomet. Polym. Mater. 31, 4443 (2021). https://doi.org/10.1007/s10904-021-02118-7
  15. V. D. Makhaev, L. A. Petrova. Russ. J. Inorg. Chem. 56, 304 (2011). https://doi.org/10.1134/S0036023611020185
  16. V. D. Makhaev, L. A. Petrova. Russ. J. Gen. Chem. 88, 1430 (2018). https://doi.org/10.1134/S1070363218070137
  17. G. M. Sheldrick. Acta Cryst., C71, 3 (2015). https://doi.org/10.1107/S2053229614024218
  18. Licence to Use Agreement: Gaussian, Inc., Wallingford, CT 06492.
  19. R. N. Kapoor, R. C. Mehrotra. J. Chem. Soc. 1, 422 (1959).
  20. G. E. Zaikov, M. I. Artsis, D. S. Andreev, A. V. Ignatov, Russ. J. Phys. Chem. B 16, 606 (2022). https://doi.org/10.1134/S1990793122040169
  21. R. A. Hites, K. Biemann. J. Am. Chem. Soc. 94, 5772 (1972). https://doi.org/10.1021/ja00771a039

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Asymmetric part of the structure of compound 1. Hydrogen atoms are not shown. Carbon atoms are not indicated.

Download (88KB)
3. Fig. 2. Molecular structure 1. Carbon atoms are not indicated.

Download (119KB)
4. Fig. 3. Crystal packing 1. Hydrogen atoms are not shown.

Download (171KB)
5. Fig. 4. General view of the Zr2O(CH3COO)6 complex with optimized geometry.

Download (61KB)
6. Fig. 5. General view of the tetranuclear complex Zr4(μ3-O)2(CH3COO)12 formed by reaction (9). Zirconium atoms are large white circles, oxygen atoms are light gray circles, carbon atoms are dark gray circles. Hydrogen atoms are not shown. The numbers near the bonds are bond lengths in Å.

Download (164KB)

Copyright (c) 2024 Russian Academy of Sciences