Application of 3D Visualization in Biomedical Research

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Three-dimensional microscopy (3D microscopy) has become an important tool in cellular analysis and biomedical research, providing unique opportunities to visualize and study complex biological structures. The capabilities of different types of microscopies in studying cellular structures and macromolecular complexes span a wide range of scales, from investigating cell behavior and function in physiological environments to understanding the molecular architecture of organelles. At each scale, the challenge of 3D imaging is to extract the highest possible spatial resolution while minimizing damage to living cells. This review highlights the various applications of 3D microscopy in areas such as cancer research, viruses, bacterial properties and structure, and organ and implant microstructure analysis.

作者简介

A. Safonov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; National Research Nuclear University MEPhI

Email: andreo-6@mail.ru
Russia, Moscow

A. Altunina

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; Moscow Institute of Physics and Technology (National Research University)

Russia, Moscow; Russia, Dolgoprudny

I. Kolpashnikov

National Research Nuclear University MEPhI

Russia, Moscow

D. Solovieva

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry

Russia, Moscow

V. Oleynikov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; National Research Nuclear University MEPhI

Email: email@example.com
Russia, Moscow

参考

  1. Northover A.S., Keatley S., Elliot A.D., Hobbs R.P., Yang R., Lymbery A.J., Godfrey S.S., Wayne A.F., Thompson R.C.A. // Syst. Parasitol. 2019. V. 96. P. 553–563. https://doi.org/10.1007/s11230-019-09870-y
  2. Franken L.E., Grünewald K., Boekema E.J., Stuart M.C.A. // Small. 2020. V. 16. Р. e1906198. https://doi.org/10.1002/smll.201906198
  3. Bian K., Gerber C., Heinrich A., Müller D., Scheuring S., Jiang Y. // Nat. Rev. Methods Primers. 2021. V. 1. Р. 36. https://doi.org/10.1038/s43586-021-00033-2
  4. Solovyevа D.О., Altuninа АV., Tretyak M.V., Mochalov К.Е., Oleinikov V.А. // Russ. J. Bioorg. Chem. 2024. V. 50. P. 1215–1236. https://doi.org/10.1134/S1068162024040356
  5. Mochalov K.E., Korzhov D.S., Altunina A.V., Agapova O.I., Oleinikov V.A. // Act. Nat. 2024. V. 16. P. 14–29. https://doi.org/10.32607/actanaturae.27323
  6. Schneider J.P., Hegermann J., Wrede C. // Histochem. Cell Biol. 2020. V. 155. P. 241–260. https://doi.org/10.1007/s00418-020-01916-3
  7. Gay H., Anderson T.F. // Science. 1954. V. 120. P. 1071–1073. https://doi.org/10.1126/science.120.3130.1071
  8. Miranda K., Girard-Dias W., Attias M., de Souza W., Ramos I. // Mol. Reprod. Dev. 2015. V. 82. P. 530–547. https://doi.org/10.1002/mrd.22455
  9. Kremer A., Lippens S., Bartunkova S., Asselbergh B., Blanpain C., Fendrych M., Goossens A., Holt M., Janssens S., Krols M., Larsimont J.-C., Guire C.M., Nowack M.K., Saelens X., Schertel A., Schepens B., Slezak M., Timmerman V., Theunis C., Brempt R.V.A.N., Visser Y., Guérin C.J. // J. Microsc. 2015. V. 259. P. 80–96. https://doi.org/10.1111/jmi.12211
  10. Beike L., Wrede C., Hegermann J., Lopez-Rodriguez E., Kloth C., Gauldie J., Kolb M., Maus U., Ochs M., Knudsen L. // Lab. Invest. 2019. V. 99. P. 830–852. https://doi.org/10.1038/s41374-019-0189-x
  11. McIntosh R., Nicastro D., Mastronarde D. // Trends Cell. Biol. 2005. V. 15. P. 43–51. https://doi.org/10.1016/j.tcb.2004.11.009
  12. Gan L., Jensen G.J. // Q. Rev. Biophys. 2012. V. 45. P. 27–56. https://doi.org/10.1017/S0033583511000102
  13. Irobalieva R.N., Martins B., Medalia O. // J. Cell Sci. 2016. V. 129. P. 469–476. https://doi.org/10.1242/jcs.171967
  14. Benjin X., Ling L. // Protein Sci. 2020. V. 29. P. 872–882. https://doi.org/10.1002/pro.3805
  15. Schneider J.P., Wrede C., Muhlfeld C. // Int. J. Mol. Sci. 2020. V. 21. P. 1089. https://doi.org/10.3390/ijms21031089
  16. Hegermann J., Wrede C., Fassbender S., Schliep R., Ochs M., Knudsen L., Mühlfeld C. // Am. J. Physiol. Lung Cell Mol. Physiol. 2019. V. 317. P. L778–L784. https://doi.org/10.1152/ajplung.00333.2019
  17. Steyer A.M., Ruhwedel T., Nardis C., Werner H.B., Nave K-A., Möbius W. // J. Struct. Biol. 2020. V. 210. P. 107492. https://doi.org/10.1016/j.jsb.2020.107492
  18. Wrede C., Hegermann J., Muhlfeld C. // Am. J. Physiol. Ren. Physiol. 2020. V. 318. P. F1246–F1251. https://doi.org/10.1152/ajprenal.00097.2020
  19. Luckner M., Wanner G. // Microsc. Microanal. 2018. V. 24. P. 526–544. https://doi.org/10.1017/S1431927618015015
  20. Alekseev A., Efimov A., Lu K., Loos J. // Adv. Mater. 2009. V. 21. P. 4915–4919. https://doi.org/10.1002/adma.200901754
  21. Efimov A.E., Tonevitsky A.G., Dittrich M., Matsko N.B. // J. Microscopy. 2007. V. 226. P. 207–217.https://doi.org/10.1111/j.1365-2818.2007.01773.x
  22. Efimov A.E., Moisenovich M.M., Bogush V.G., Agapov I.I. // RSC Advances. 2014. V. 4. P. 60943–60947. https://doi.org/10.1039/C4RA08341E
  23. Mochalov K.E., Chistyakov A.A., Solovyeva D.O., Mezin A.V., Oleinikov V.A., Vaskan I.S., Molinari M., Agapov I.I., Nabiev I., Efimov A.E. // Ultramicroscopy. 2017. V. 182. P. 118–123. https://doi.org/10.1016/j.ultramic.2017.06.022
  24. Zipfel W.R., Williams R.M., Webb W.W. // Nat. Biotechnol. 2003. V. 21. P. 1369–1377. https://doi.org/10.1038/nbt899
  25. Gugel H., Bewersdorf J., Jakobs S., Engelhardt J., Storz R., Hell S.W. // Biophys. J. 2004. V. 87. P. 4146–4152. https://doi.org/10.1529/biophysj.104.045815
  26. Yildiz A., Forkey J.N., McKinney S.A., Ha T., Goldman Y.E., Selvin P.R. // Science. 2003. V. 300. P. 2061–2065. https://doi.org/10.1126/science.1084398
  27. Dyba M., Hell S.W. // Phys. Rev. Lett. 2002. V. 88. P. 163901. https://doi.org/10.1103/PhysRevLett.88.163901
  28. Westphal V., Kastrup L., Hell S.W. // Appl. Phys. B. 2003. V. 77. P. 377–380. https://doi.org/10.1007/s00340-003-1280-x
  29. Huang B., Wang W., Bates M., Zhuang X. // Science. 2008. V. 319. P. 810–813. https://doi.org/10.1126/science.1153529
  30. Betzig E., Patterson G.H., Sougrat R., Lindwasser O.W., Olenych S., Bonifacino J.S., Davidson M.W., Lippincott-Schwartz J., Hess H.F. // Science. 2006. V. 313. P. 1642–1645. https://doi.org/10.1126/science.1127344
  31. Sharonov A., Hochstrasser R.M. // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 18911–18916. https://doi.org/10.1073/pnas.0609643104
  32. Jungmann R., Avendaño M.S., Woehrstein J.B., Dai M., Shih W.M., Yin P. // Nat. Methods. 2014. V. 11. P. 313–318. https://doi.org/10.1038/nmeth.2835
  33. Chen Y., Cai J., Zhao T., Wang C., Dong S., Luo S., Chen Z.W. // Ultramicroscopy. 2005. V. 103. P. 173–182. https://doi.org/10.1016/j.ultramic.2004.11.019
  34. Arthur J.S.C., Cohen P. // FEBS Lett. 2000. V. 482. P. 44–48. https://doi.org/10.1016/s0014-5793(00)02031-7
  35. Di Tommaso E., de Turris V., Choppakatla P., Funabiki H., Giunta S. // Mol. Biol. Cell. 2023. V. 34. P. ar61. https://doi.org/10.1091/mbc.E22-08-0332
  36. Altemose N., Logsdon G.A., Bzikadze A.V., Sidhwani P., Langley S.A., Caldas G.V., Hoyt S.J., Uralsky L., Ryabov F.D., Shew C.J., Sauria M.E.G., Borchers M., Gershman A., Mikheenko A., Shepelev V.A., Dvorkina T., Kunyavskaya O., Vollger M.R., Rhie A., McCartney A.M., Asri M., Lorig-Roach R., Shafin K., Lucas J.K., Aganezov S., Olson D., de Lima L.G., Potapova T., Hartley G.A., Haukness M., Kerpedjiev P., Gusev F., Tigyi K., Brooks S., Young A., Nurk S., Koren S., Salama S.R., Paten B., Rogaev E.I., Streets A., Karpen G.H., Dernburg A.F., Sullivan B.A., Straight A.F., Wheeler T.J., Gerton J.L., Eichler E.E., Phillippy A.M., Timp W., Dennis M.Y. O’Neill R.J., Zook J.M., Schatz M.C., Pevzner P.A., Diekhans M., Langley C.H., Alexandrov I.A., Miga K.H. // Science. 2022. V. 376. P. eabl4178.https://doi.org/10.1126/science.abl4178
  37. Andronov L., Ouararhni K., Stoll I., Klaholz B.P., Hamiche A. // Nat. Commun. 2019. V. 10. P. 4436.https://doi.org/10.1038/s41467-019-12383-3
  38. Klevanski M., Herrmannsdoerfer F., Sass S., Venkataramani V., Heilemann M., Kuner T. // Nat. Commun. 2020. V. 11. P. 1552. https://doi.org/10.1038/s41467-020-15362-1
  39. Borst J.G., Soria van Hoeve J. // Ann. Rev. Physiol. 2012. V. 74. P. 199–224. https://doi.org/10.1146/annurev-physiol-020911-153236
  40. Glebov O.O., Jackson R.E., Winterflood C.M., Owen D.M., Barker E.A., Doherty P., Ewers H., Burrone J. // Cell Rep. 2017. V. 18. P. 2715–2728. https://doi.org/10.1016/j.celrep.2017.02.064
  41. Morales M., Colicos M.A., Goda Y. // Neuron. 2000. V. 27. P. 539–550. https://doi.org/10.1016/s0896-6273(00)00064-7
  42. Sankaranarayanan S., Atluri P.P., Ryan T.A. // Nat. Neurosci. 2003. V. 6. P. 127–135. https://doi.org/10.1038/nn1002
  43. Cingolani L.A., Goda Y. // Nat. Rev. Neurosci. 2008. V. 9. P. 344–356. https://doi.org/10.1038/nrn2373
  44. McNamara R.P., Zhou Y., Eason A.B., Landis J.T., Chambers M.G., Willcox S., Peterson T.A., Schouest B., Maness N.J., MacLean A.G., Costantini L.M., Griffith J.D., Dittmer D.P. // J. Extracell. Vesicles. 2022. V. 11. P. e12191. https://doi.org/10.1002/jev2.12191
  45. Tojima T., Yamane Y., Takagi H., Takeshita T., Sugiyama T., Haga H., Kawabata K., Ushiki T., Abe K., Yoshioka T., Ito E. // Neuroscience. 2000. V. 101. P. 471–481. https://doi.org/10.1016/s0306-4522(00)00320-1
  46. Chitty C., Kuliga K., Xue W.F. // Biochem. Soc. Transactions. 2024. V. 52. P. 761–771. https://doi.org/10.1042/BST20230857
  47. Gómez-Varela A.I., Stamov D.R., Miranda A., Alves R., Barata-Antunes C., Dambournet D., Drubin D.G., Paiva S., De Beule P.A.A. // Scientific Rep. 2020. V. 10. P. 1122. https://doi.org/10.1038/s41598-020-57885-z
  48. Dambournet D., Hong S.H., Grassart A., Drubin D.G. // Methods Enzymol. 2014. V. 546. P. 139–160. https://doi.org/10.1016/B978-0-12-801185-0.00007-6
  49. Navikas V., Leitao S.M., Grussmayer K.S., Descloux A., Drake B., Yserentant K., Werther P., Herten D.P., Wombacher R., Radenovic A., Fantner G.E. // Nat. Commun. 2021. V. 12. P. 4565. https://doi.org/10.1038/s41467-021-24901-3
  50. Henderson E., Sakaguchi D.S. // Neuroimage. 1993. V. 1. P. 145–150. https://doi.org/10.1006/nimg.1993.1007
  51. Martin-Jimenez D., Ahles S., Mollenhauer D., Wegner H.A., Schirmeisen A., Ebeling D. // Phys. Rev. Lett. 2019. V. 122. P. 196101. https://doi.org/10.1103/PhysRevLett.122.196101
  52. Lisi A., Pozzi D., Pasquali E., Rieti S., Girasole M., Cricenti A., Generosi R., Serafino A.L., Congiu-Castellano A., Ravagnan G., Giuliani L., Grimaldi S. // Bioelectromagnetics. 2000. V. 21. P. 46–51. https://doi.org/10.1002/(sici)1521-186x(200001)21:1<46::aid-bem7>3.0.co;2-z
  53. Orosz E., Gombos K., Petrevszky N., Csonka D., Haber I., Kaszas B., Toth A., Molnar K., Kalacs K., Piski Z., Gerlinger I., Burian A., Bellyei S., Szanyi I. // Scientific Rep. 2020. V. 10. P. 40. https://doi.org/10.1038/s41598-019-56429-4
  54. Yurtsever A., Yoshida T., Badami Behjat A., Araki Y., Hanayama R., Fukuma T. // Nanoscale. 2021. V. 13. P. 6661-6677. https://doi.org/10.1039/d0nr09178b
  55. Kontomaris S.V., Stylianou A., Georgakopoulos A., Malamou A. // Nanomaterials. 2023. V. 13. P. 395.https://doi.org/10.3390/nano13030395
  56. Plodinec M., Loparic M., Monnier C.A., Obermann E.C., Zanetti-Dallenbach R., Oertle P., Hyotyla J.T., Aebi U., Bentires-Alj M., Lim R.Y., Schoenenberger C.A. // Nature Nanotechnol. 2012. V. 7. P. 757–765. https://doi.org/10.1038/nnano.2012.167
  57. Stylianou A., Lekka M., Stylianopoulos T. // Nanoscale. 2018. V. 10. P. 20930–20945. https://doi.org/10.1039/c8nr06146g
  58. Alakwaa W., Nassef M., Badr A. // Int. J. Adv. Comp. Sci. Appl. 2017. V. 8. P. 410–417. https://doi.org/10.14569/IJACSA.2017.080853
  59. Shen C.N., Goh K.S., Huang C.R., Chiang T.C., Lee C.Y., Jeng Y.M., Peng S.J., Chien H.J., Chung M.H., Chou Y.H., Hsieh C.C., Kulkarni S., Pasricha P.J., Tien Y.W., Tang S.C. // EBioMedicine. 2019. V. 47. P. 98–113. https://doi.org/10.1016/j.ebiom.2019.08.044
  60. Brown M., Assen F.P., Leithner A., Abe J., Schachner H., Asfour G., Bago-Horvath Z., Stein J.V., Uhrin P., Sixt M., Kerjaschki D. // Science. 2018. V. 359. P. 1408–1411. https://doi.org/10.1126/science.aal3662
  61. Craver B.M., Acharya M.M., Allen B.D., Benke S.N., Hultgren N.W., Baulch J.E., Limoli C.L. // Environ. Mol. Mutagen. 2016. V. 57. P. 341–349. https://doi.org/10.1002/em.22015
  62. Guldner I.H., Yang L., Cowdrick K.R., Wang Q., Alvarez Barrios W.V., Zellmer V.R., Zhang Y., Host M., Liu F., Chen D.Z., Zhang S. // Scientific Rep. 2016. V. 6. P. 24201. https://doi.org/10.1038/srep24201
  63. Fiore V.F., Krajnc M., Quiroz F.G., Levorse J., Pasolli H.A., Shvartsman S.Y., Fuchs E. // Nature. 2020. V. 585. P. 433–439. https://doi.org/10.1038/s41586-020-2695-9
  64. Noë M., Rezaee N., Asrani K., Skaro M., Groot V.P., Wu P.H., Olson M.T., Hong S.M., Kim S.J., Weiss M.J., Wolfgang C.L., Makary M.A., He J., Cameron J.L., Wirtz D., Roberts N.J., Offerhaus G.J.A., Brosens L.A.A., Wood L.D., Hruban R.H. // Am. J. Pathol. 2018. V. 188. P. 1530–1535. https://doi.org/10.1016/j.ajpath.2018.04.002
  65. Cortese M., Lee J.Y., Cerikan B., Neufeldt C.J., Oorschot V.M.J., Köhrer S., Hennies J., Schieber N.L., Ronchi P., Mizzon G., Romero-Brey I., Santarella-Mellwig R., Schorb M., Boermel M., Mocaer K., Beckwith M.S., Templin R.M., Gross V., Pape C., Tischer C., Frankish J., Horvat N.K., Laketa V., Stanifer M., Boulant S., Ruggieri A., Chatel-Chaix L., Schwab Y., Bartenschlager R. // Cell Host Microbe. 2020. V. 28. P. 853–866. https://doi.org/10.1016/j.chom.2020.11.003
  66. Wolff G., Melia C.E., Snijder E.J., Bárcena M. // Trends Microbiol. 2020. V. 28. P. 1022–1033. https://doi.org/10.1016/j.tim.2020.05.009
  67. Knoops K., Kikkert M., Worm S.H., ZevenhovenDobbe J.C., van der Meer Y., Koster A.J., Mommaas A.M., Snijder E.J. // PLoS Biol. 2008. V. 6. P. e226. https://doi.org/10.1371/journal.pbio.0060226
  68. Pekmezovic M., Mogavero S., Naglik J.R., Hube B. // Trends Microbiol. 2019. V. 27. P. 982–996. https://doi.org/10.1016/j.tim.2019.07.006
  69. Hoffmann D., Mereiter S., Jin Oh Y., Monteil V., Elder E., Zhu R., Canena D., Hain L., Laurent E., Grünwald-Gruber C., Klausberger M., Jonsson G., Kellner M.J., Novatchkova M., Ticevic M., Chabloz A., Wirnsberger G., Hagelkruys A., Altmann F., Mach L., Stadlmann J., Oostenbrink C., Mirazimi A., Hinterdorfer P., Penninger J.M. // EMBO J. 2021. V. 40. P. e108375. https://doi.org/10.15252/embj.2021108375
  70. Zhang T., Gupta A., Frederick D., Layman L., Smith D.M., Gianella S., Kieffer C. // J. Vis. Exp. 2021. V. 2021. P. e62441. https://doi.org/10.3791/62441
  71. Felts R.L., Narayan K., Estes J.D., Shi D., Trubey C.M., Fu J., Hartnell L.M., Ruthel G.T., Schneider D.K., Nagashima K., Bess J.W., Jr, Bavari S., Lowekamp B.C., Bliss D., Lifson J.D., Subramaniam S. // Proc. Nat. Acad. Sci. 2010. V. 107. P. 13336–13341. https://doi.org/10.1073/pnas.1003040107
  72. Xia X., Zhou Z.H. // STAR Protoc. 2022. V. 3. P. 101825.https://doi.org/10.1016/j.xpro.2022.101825
  73. Wang X., Ma J., Jin X., Yue N., Gao P., Mai K.K.K., Wang X.B., Li D., Kang B.H., Zhang Y.J. // Integr. Plant Biol. 2021. V. 63. P. 353–364. https://doi.org/10.1111/jipb.13027
  74. Cui Y., Cao W., He Y., Zhao Q., Wakazaki M., Zhuang X., Jiang L. // Nat. Plants. 2018. V. 5. P. 14–17. https://doi.org/10.1038/s41477-018-0328-1
  75. Смирнова Т.А., Зубашева М.В., Шевлягина Н.В., Николаенко М.А., Азизбекян Р.Р. // Микробиология. 2013. V. 82. P. 698–698. https://doi.org/10.7868/S0026365613060098
  76. Petersen I., Schlüter R., Hoff K.J., Liebscher V., Bange G., Riedel K., Pané-Farré J. // Sci. Rep. 2020. V. 10. P. 125. https://doi.org/10.1038/s41598-019-56907-9
  77. Baddeley A., Rubak E., Turner R. // Spatial Point Patterns: Methodology and Applications with R. 2017. V. 49. P. 815–817. https://doi.org/10.1007/s11004-016-9670-x
  78. Mondragón-Palomino O., Poceviciute R., Lignell A., Griffiths J.A., Takko H., Ismagilov R.F. // Proc. Natl. Acad. Sci. USA. 2022. V. 119. P. e2118483119. https://doi.org/10.1073/pnas.2118483119
  79. Hughes L., Hawes C., Monteith S., Vaughan S. // Protoplasma. 2014. V. 251. P. 395–401. https://doi.org/10.1007/s00709-013-0580-1
  80. Asally M., Kittisopikul M., Rué P., Du Y, Hu Z., Çağatay T., Robinson A.B., Lu H., Garcia-Ojalvo J., Süel G.M. // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 18891–18896. https://doi.org/10.1073/pnas.1212429109
  81. Peloquin J., Huynh J., Williams R.M., Reinhart-King C.A. // J. Biomechan. 2011. V. 44. P. 815–821. https://doi.org/10.1016/j.jbiomech.2010.12.018
  82. Smith U., Ryan J.W., Michie D.D., Smith D.S. // Science. 1971. V. 173. P. 925–927. https://doi.org/10.1126/science.173.4000.925
  83. Kusche-Vihrog K., Urbanova K., Blanqué A., Wilhelmi M., Schillers H., Kliche K., Pavenstädt H., Brand E., Oberleithner H. // Hypertension. 2011. V. 57. P. 231–237. https://doi.org/10.1161/HYPERTENSIONAHA.110.163444
  84. Oberleithner H., Peters W., Kusche-Vihrog K., Korte S., Schillers H., Kliche K., Oberleithner K. // Pflügers Arch. 2011. V. 462. P. 519–528. https://doi.org/10.1007/s00424-011-0999-1
  85. Majzner K., Kaczor A., Kachamakova-Trojanowska N., Fedorowicz A., Chlopicki S., Baranska M. // Analyst. 2013. V. 138. P. 603–610. https://doi.org/10.1039/c2an36222h
  86. Pilarczyk M., Rygula A., Kaczor A., Mateuszuk L., Maślak E., Chlopicki S., Baranska M. // Vibrat. Spectroscopy. 2014. V. 75. P. 39–44. https://doi.org/10.1016/j.vibspec.2014.09.004
  87. van Grunsven L.A. // Adv. Drug Deliv. Rev. 2017. V. 121. P. 133–146. https://doi.org/10.1016/j.addr.2017.07.004
  88. Caddeo A., Maurotti S., Kovooru L., Romeo S. // Atherosclerosis. 2024. P. 117544. https://doi.org/10.1016/j.atherosclerosis.2024.117544
  89. Garbarino O., Lambroia L., Basso G., Marrella V., Franceschini B., Soldani C., Pasqualini F., Giuliano D., Costa G., Peano C., Barbarossa D., Annarita D., Salvati A., Terracciano L., Torzilli G., Donadon M., Faggioli F. // Aging Cell. 2023. V. 22. P. e13853. https://doi.org/10.1111/acel.13853
  90. Fan W., Li Y., Kunimoto K., Török N.J. // J. Vis. Exp. 2022. V. 180. P. e63106. https://doi.org/10.3791/63106
  91. Strauss O., Björkström N.K. // Kupffer Cells: Methods and Protocols. 2020. P. 55–63. https://doi.org/10.1007/978-1-0716-0704-6_7
  92. Parlakgül G., Arruda A.P., Pang S., Cagampan E., Min N., Güney E., Lee G.Y., Inouye K., Hess H.F., Xu C.S., Hotamışlıgil G.S. // Nature. 2022. V. 603. P. 736–742. https://doi.org/10.1038/s41586-022-04488-5
  93. Amin M.J., Zhao T., Yang H., Shaevitz J.W. // Scientific Rep. 2022. V. 12. P. 16343. https://doi.org/10.1038/s41598-022-20664-z
  94. Monteiro-Cardoso V.F., Le Bars R., Giordano F. // J. Visualized Exp. 2023. P. e64750. https://doi.org/10.3791/64750
  95. Puhka M., Joensuu M., Vihinen H., Belevich I., Jokitalo E. //Mol. Biol Cell. 2012. V. 23. P. 2424–2432. https://doi.org/10.1091/mbc.E10-12-0950
  96. Weigel A.V., Chang C.L., Shtengel G., Xu C.S., Hoffman D.P., Freeman M., Iyer N., Aaron J., Khuon S., Bogovic J., Qiu W., Hess H.F., Lippincott-Schwartz J. // Cell. 2021. V. 184. P. 2412–2429.e16. https://doi.org/10.1016/j.cell.2021.03.035
  97. Friedman J.R., Voeltz G.K. // Trends Cell Biol. 2011. V. 21. P. 709–717. https://doi.org/10.1016/j.tcb.2011.07.004
  98. Kittelmann M. // Methods Mol. Biol. 2018. V. 1691. P. 15–21. https://doi.org/10.1007/978-1-4939-7389-7_2
  99. Cardoen B., Vandevoorde K.R., Gao G., Ortiz-Silva M., Alan P., Liu W., Tiliakou E., Vogl A.W., Hamarneh G., Nabi I.R. // J. Cell Biol. 2023. V. 223. P. e202206109. https://doi.org/10.1083/jcb.202206109
  100. Biazik J., Ylä-Anttila P., Vihinen H., Jokitalo E., Eskelinen E.L. // Autophagy. 2015. V. 11. P. 439–451.https://doi.org/10.1080/15548627.2015.1017178
  101. Chun Chung G.H., Gissen P., Stefan C.J., Burden J.J. // J. Vis. Exp. 2022. V. 184. https://doi.org/10.3791/63496
  102. Raimondi A., Ilacqua N., Pellegrini L. // Methods in Cell Biology. 2023. V. 177. P. 101–123. https://doi.org/10.1016/bs.mcb.2022.12.021
  103. Franks T.J., Colby T.V., Travis W.D., Tuder R.M., Reynolds H.Y., Brody A.R., Cardoso W.V., Crystal R.G., Drake C.J., Engelhardt J., Frid M., Herzog E., Mason R., Phan S.H., Randell S.H., Rose M.C., Stevens T., Serge J., Sunday M.E., Voynow J.A., Weinstein B.M., Whitsett J., Williams M.C. // Proc. Am. Thoracic Soc. 2008. V. 5. P. 763–766. https://doi.org/10.1513/pats.200803-025HR
  104. Schittny J.C. // Histochem. Cell Biol. 2018. V. 150. P. 677–691. https://doi.org/10.1007/s00418-018-1749-7
  105. Gómez-Gaviro M.V., Sanderson D., Ripoll J., Desco M. // Iscience. 2020. V. 23. https://doi.org/10.1016/j.isci.2020.101432
  106. Huch M., Koo B.K. // Development. 2015. V. 142. P. 3113–3125. https://doi.org/10.1242/dev.118570
  107. Shi R., Radulovich N., Ng C., Liu N., Notsuda H., Cabanero M., Martins-Filho S.N., Raghavan V., Li Q., Mer A.S., Rosen J.C., Li M., Wang Y.H., Tamblyn L., Pham N.A., Haibe-Kains B., Liu G., Moghal N., Tsao M.S. // Clin. Cancer Res. 2020. V. 26. P. 1162–1174. https://doi.org/10.1158/1078-0432.CCR-19-1376
  108. Paolicelli G., Luca A., Jose S.S., Antonini M., Teloni I., Fric J., Zelante T. // Front. Immunol. 2019. V. 10. P. 323. https://doi.org/10.3389/fimmu.2019.00323
  109. Salahudeen A.A., Choi S.S., Rustagi A., Zhu J., van Unen V., de la O.S.M., Flynn R.A., Margalef-Català M., Santos A.J.M., Ju J., Batish A., Usui T., Zheng G.X.Y., Edwards C.E., Wagar L.E., Luca V., Anchang B., Nagendran M., Nguyen K., Hart D.J., Terry J.M., Belgrader P., Ziraldo S.B., Mikkelsen T.S., Harbury P.B., Glenn J.S., Garcia K.C., Davis M.M., Baric R.S., Sabatti C., Amieva M.R., Blish C.A., Desai T.J., Kuo C.J. // BioRxiv. 2020. V. 588. P. 670–675. https://doi.org/10.1038/s41586-020-3014-1
  110. van Ineveld R.L., Ariese H.C.R., Wehrens E.J., Dekkers J.F., Rios A.C. // J. Visualized Exp. 2020. P. e60709. https://doi.org/10.3791/60709
  111. Wu Y.C., Moon H.G., Bindokas V.P., Phillips E.H., Park G.Y., Lee S.S. // Am. J. Respir. Cell Mol. Biol. 2023. V. 69. P. 13–21. https://doi.org/10.1165/rcmb.2022-0353MA
  112. Bouten C.V., Dankers P.Y., Driessen-Mol A., Pedron S., Brizard A.M., Baaijens F.P. // Adv. Drug Deliv. Rev. 2011. V. 63. P. 221–241. https://doi.org/10.1016/j.addr.2011.01.007
  113. Kim P.H., Cho J.Y. // BMB Rep. 2016. V. 49. P. 26.https://doi.org/10.5483/BMBRep.2016.49.1.165
  114. Repanas A., Andriopoulou S., Glasmacher B. // J. Drug Deliv. Sci. Technol. 2016. V. 31. P. 137–146.https://doi.org/10.1016/j.jddst.2015.12.007
  115. Balashov V., Efimov A., Agapova O., Pogorelov A., Agapov I., Agladze K. // Acta Biomater. 2018. V. 68. P. 214–222. https://doi.org/10.1016/j.actbio.2017.12.031
  116. Webb R.H. // Rep. Progress Phys. 1996. V. 59. P. 427.https://doi.org/10.1088/0034-4885/59/3/003
  117. Iandolo D., Pennacchio F.A., Mollo V., Rossi D., Dannhauser D., Cui B., Owens R.M., Santoro F. // Adv. Biosystems. 2019. V. 3. P. 1800103. https://doi.org/10.1002/adbi.201800103
  118. Efimov A.E., Agapova O.I., Safonova L.A., Bobrova M.M., Parfenov V.A., Koudan E.V., Pereira F.D.A.S., Bulanova E.A., Mironov V.A., Agapov I.I. // eXPRESS Polymer Lett. 2019. V. 13. P. 632–641. https://doi.org/10.3144/expresspolymlett.2019.53
  119. Stachewicz U., Qiao T., Ralinson S.C.F., Almeida F.V., Li W.Q., Cattell M., Barber A.H. // Acta Biomater. 2015. V. 27. P. 88–100. https://doi.org/10.1016/j.actbio.2015.09.003
  120. Safonova L., Bobrova M., Efimov A., Davydova L., Tenchurin T., Bogush V., Agapova O., Agapov I. // Pharmaceutics. 2021. V. 13. P. 1704. https://doi.org/10.3390/pharmaceutics13101704

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025