С-КОНЦЕВОЙ ДОМЕН ГЕМОЛИЗИНА II Bacillus cereus СПОСОБЕН ОБРАЗОВЫВАТЬ ГОМО- И ГЕТЕРООЛИГОМЕРНЫЕ ФОРМЫ ТОКСИНА НА ПОВЕРХНОСТИ МЕМБРАНЫ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Гемолизин II (НlyII) – один из ключевых патогенных факторов условно-патогенной грамположительной бактерии Bacillus cereus. НlyII, образуя поры на мембранах, лизирует клетки-мишени. НlyII относят к группе β-пороформирующих токсинов. Отличительная особенность НlyII – наличие C-концевого домена из 94 а.о. (НlyIICTD). Показано, что в слабокислых условиях (pH 5.0), соответствующих примембранной области, C-концевые домены (как сами по себе, так и в составе токсина) образуют устойчивые комплексы, состоящие из полиоразмерных и укороченных молекул токсина. НlyII, НlyIILCTD (большой C-концевой фрагмент Met225–Ile412) и НlyIICTD получали с использованием рекомбинантных штаммов-продуцентов Escherichia coli BL21(DE3). Биотинилирование НlyIICTD проводили с использованием N-гидроксисукцинимидного эфира биотина. Взаимодействие НlyIICTD с НlyIICTD, НlyIILCTD и НlyII, а также взаимодействие НlyIICTD с мембранами эритроцитов исследовали иммуноферментным анализом и иммунобиоттингом, как с использованием стрептавидина, конъюгированного с пероксидазой хрена, так и с использованием моноклональных антител против НlyII. НlyIICTD в слабокислых условиях взаимодействовал как с доменом НlyIICTD в составе полиоразмерного токсина, так и с белком НlyIICTD. Взаимодействие НlyIICTD с мембраной эритроцитов кратно увеличивалось в присутствии токсина.

Об авторах

О. С Ветрова

Филиал ФГБУН ГНЦ “Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова” РАН (Филиал ГНЦ ИБХ РАН)

Россия, Пущино

Н. В Руденко

Филиал ФГБУН ГНЦ “Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова” РАН (Филиал ГНЦ ИБХ РАН)

Email: nrudkova@mail.ru
Россия, Пущино

Б. С Мельник

Филиал ФГБУН ГНЦ “Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова” РАН (Филиал ГНЦ ИБХ РАН); ФГБУН “Институт белка” РАН (ИБ РАН)

Россия, Пущино

А. П Каратовская

Филиал ФГБУН ГНЦ “Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова” РАН (Филиал ГНЦ ИБХ РАН)

Россия, Пущино

А. В Замятина

Филиал ФГБУН ГНЦ “Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова” РАН (Филиал ГНЦ ИБХ РАН)

Россия, Пущино

А. С Нагель

Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН (ИБФМ РАН) ФИЦ “Пущинский научный центр биологических исследований” РАН

Россия, Пущино

Ж. И Андреева-Ковалевская

Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН (ИБФМ РАН) ФИЦ “Пущинский научный центр биологических исследований” РАН

Россия, Пущино

А. В Слунов

Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН (ИБФМ РАН) ФИЦ “Пущинский научный центр биологических исследований” РАН

Россия, Пущино

Ф. А Бровко

Филиал ФГБУН ГНЦ “Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова” РАН (Филиал ГНЦ ИБХ РАН)

Россия, Пущино

А. С Солонин

Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН (ИБФМ РАН) ФИЦ “Пущинский научный центр биологических исследований” РАН

Россия, Пущино

Список литературы

  1. Logan N.A. // J. Appl. Microbiol. 2012. V. 112. P. 417–429. https://doi.org/10.1111/j.1365-2672.2011.05204.x
  2. Thery M., Cousin V.L., Tissieres P., Enault M., Morin L. // Front. Pediatr. 2022. V. 10. P. 978250. https://doi.org/10.3389/fped.2022.978250
  3. Ramarao N., Sanchis V. // Toxins. 2013. V. 5. P. 1119–1139. https://doi.org/10.3390/toxins5061119
  4. Miles G., Bayley H., Cheley S. // Protein Sci. 2002. V. 11. P. 1813–1824. https://doi.org/10.1110/ps.0204002
  5. Hu H., Liu M., Sun S. // Drug Des. Dev. Ther. 2021. V. 15. P. 3773–3781. https://doi.org/10.2147/DDDT.S322393
  6. Patino-Navarrete R., Sanchis V. // Res. Microbiol. 2017. V. 168. P. 309–318. https://doi.org/10.1016/j.resmic.2016.07.002
  7. Cadot C., Tran S.L., Yignaud M.L., de Buyser M.L., Kolsio A.B., Brisabois A., Nguyen-Thé C., Lerechts D., Guinebretière M.H., Ramarao N. // J. Clin. Microbiol. 2010. V. 48. P. 1358–1365. https://doi.org/10.1128/JCM.02123-09
  8. Rudenko N.V., Karatovskaya A.P., Zamyatina A.V., Siunov A.V., Andreeva-Kovalevskaya Z.A., Nagel A.S., Brovko F.A., Solonin A.S. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 321–326. https://doi.org/10.1134/S1068162020030188
  9. Rudenko N., Siunov A., Zamyatina A., Melnik B., Nagel A., Karatovskaya A., Borisova M., Shepelyakovskaya A., Andreeva-Kovalevskaya Zh., Kolesnikov A., Surin A., Brovko F., Solonin A. // Int. J. Biol. Macromol. 2022. V. 200. P. 416–427. https://doi.org/10.1016/j.ijbiomac.2022.01.013
  10. Kaplan A.R., Kaus K., De S., Olson R., Alexandrescu A.T. // Sci. Rep. 2017. V. 1. P. 3277. https://doi.org/10.1038/s41598-017-02917-4
  11. Kaplan A.R., Maciejewski M.W., Olson R., Alexandrescu A.T. // Biomol. NMR Assign. 2014. V. 2. P. 419–423. https://doi.org/10.1007/s12104-013-9530-2
  12. Nagel A.S., Rudenko N.V., Luchkina P.N., Karatovskaya A.P., Zamyatina A.V., Andreeva-Kovalevskaya Z.I., Siunov A.V., Brovko F.A., Solonin A.S. // Molecules. 2023. V. 28. P. 3581. https://doi.org/10.3390/molecules28083581
  13. Nagel A.S., Vetrova O.S., Rudenko N.V., Karatovskaya A.P., Zamyatina A.V., Andreeva-Kovalevskaya Z.I., Salyamov V.I., Egorova N.A., Siunov A.V., Ivanova T.D., Boziev K.M., Brovko F.A., Solonin A.S. // Int. J. Mol. Sci. 2024. V. 25. P. 5327. https://doi.org/10.3390/ijms25105327
  14. Bychkova V.E., Dolgikh D.A., Balobanov V.A., Finkelstein A.V. // Molecules. 2022. V. 27. P. 4361. https://doi.org/10.3390/molecules27144361.
  15. Engelman D.M. // Nature. 2005. V. 438. P. 578–580. https://doi.org/10.1038/nature04394
  16. Von Meer G., Voelker D.R., Feigenson G.W. // Mol. Cell Biol. 2008. V. 9. P. 112–124. https://doi.org/10.1038/nrm2330
  17. Eisenberg M., Gresdff T., Riccio T., McLaughlin S. // Biochemistry. 1979. V. 18. P. 5213–5223. https://doi.org/10.1021/bi00594a028
  18. Prats M., Teissie J., Toccane J.F. // Nature. 1986. V. 322. P. 756–758. https://doi.org/10.1038/322756a0
  19. Wintiski A.P., McLaughlin A.C., McDaniel R.V., Eisenberg M., McLaughlin S. // Biochemistry. 1986. V. 25. P. 8206–8214. https://doi.org/10.1021/bi00373a013
  20. Galassi V.V., Wilke N. // Membranes (Basel). 2021. V. 11. P. 478. https://doi.org/10.3390/membranes11070478
  21. Ptitsyn O.B. // Adv. Protein Chem. 1995. V. 47. P. 83–229. https://doi.org/10.1016/s0065-3233(08)60546-x
  22. Bychkova V.E., Ptitsyn O.B. // Chemtracts Biochem. Mol. Biol. 1993. V. 4. P. 133–163.
  23. Kaplan A.R. // Adventures in structural and exploring protein conformational plasticity by NMR. Doctoral Dissertations, Connecticut: University of Connecticut, Storrs, 2019. 129 pp.
  24. Andreeva Z.I., Nesterenko V.F., Yarkov I.S., Budarina Z.I., Sineva E.V., Solonin A.S. // Protein Expr. Purif. 2006. V. 47. P. 186–193. https://doi.org/10.1016/j.pep.2005.10.030
  25. Chang S.F., Chen C.N., Lin J.C., Wang H.E., Mori S., Li J.J., Yen C.K., Hsu C.Y., Fung C.P., Chong P.C., Leng C.H., Ding Y.J., Chang F.Y., Siu L.K. // Cells. 2020. V. 9. P. 1183. https://doi.org/10.3390/cells9051183
  26. Blandine G., Popoff M.R // Biol. Cell. 2006. V. 98. P. 667–678. https://doi.org/10.1042/BC20050082
  27. Peraro M.D., van der Goot F.G. // Nat. Rev. Microbiol. 2015. V. 14. P. 77–92. https://doi.org/10.1038/nrmicro.2015.3
  28. Margheritis E., Kappelloff S., Cosentino K. // Int. J. Mol. Sci. 2023. V. 24. P. 4528. https://doi.org/10.3390/ijms24054528
  29. Iacovache I., Bischofberger M., van der Goot F.G. // Curr. Opin. Struct. Biol. 2010. V. 20. P. 241–246. https://doi.org/10.1016/j.sbi.2010.01.013
  30. Li Y., Li Y., Mengist H.M., Shi C., Zhang C., Wang B., Li T., Huang Y., Xu Y., Jin T. // Toxins (Basel). 2021. V. 13. P. 128. https://doi.org/10.3390/toxins13020128
  31. Laemmli U.K. // Nature. 1970. V. 5259. P. 680–685. https://doi.org/10.1038/227680a0

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025