A Phenol-Free Method for the Robust Isolation of the Double-Stranded RNA Produced in the E. coli HT115 Strain
- Авторлар: Ivanov A.A1,2, Golubeva T.S1,3
-
Мекемелер:
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
- Novosibirsk State University
- Immanuel Kant Baltic Federal University
- Шығарылым: Том 51, № 4 (2025)
- Беттер: 715-723
- Бөлім: Articles
- URL: https://cijournal.ru/0132-3423/article/view/690865
- DOI: https://doi.org/10.31857/S0132342325040158
- EDN: https://elibrary.ru/LOLZTF
- ID: 690865
Дәйексөз келтіру
Аннотация
Obtaining a fraction of double-stranded RNA is an integral part of any RNA interference research whether it aimed at solving fundamental or applied problems. The production of dsRNA in bacterial culture is a common technique due to its comparative cheapness and scaling-up opportunities. In this article, we propose a new method for fast and effective isolation of dsRNA from bacterial culture, as an alternative to classical phenol-chloroform extraction. In our method, phenol is replaced with less toxic methanol, and the total RNA thus isolated from bacteria contains up to 25% of the target molecule lacking the DNA contamination, which enables its usage in certain further applications without additional cleanup steps. The application of this methodology will be justified in laboratories engaged in either fundamental or applied research on RNA interference. However, scaling the technology for agricultural use may require adjustments to the protocol described in this work.
Авторлар туралы
A. Ivanov
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University
Email: a.ivanov2@g.nsu.ru
Russia, Novosibirsk; Russia, Novosibirsk
T. Golubeva
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Immanuel Kant Baltic Federal UniversityRussia, Novosibirsk, Russia, Kaliningrad
Әдебиет тізімі
- Castel S.E., Martienssen R.A. // Nat. Rev. Genet. 2013. V. 14. P. 100–112. https://doi.org/10.1038/nrg3355
- Svoboda P. // Front. Plant Sci. 2020. V. 11. P. 1237. https://doi.org/10.3389/fpls.2020.01237
- Li H., Guan R., Guo H., Miao X. // Plant Cell Environ. 2015. V. 38. P. 2277–2285. https://doi.org/10.1111/pce.12546
- Islam M.T., Davis Z., Chen L., Englander J., Zomorodi S., Frank J., Bartlett K., Somers E., Carballo S.M., Kester M., Shaked A., Pourtaheri P., Sherif M.S. // Microb. Biotechnol. 2021. V. 14. P. 1847–1856. https://doi.org/10.1111/1751-7915.13699
- Kalyandurg P.B., Sundararajan P., Dubey M., Ghadamgah F., Zahid M.A., Whisson S.C., Vetukuri R.R. // Phytopathology. 2021. V. 111. P. 2166–2175. https://doi.org/10.1094/phyto-02-21-0054-sc
- Mitter N., Worrall E.A., Robinson K.E., Li P., Jain R.G., Taochy C., Fletcher S.J., Carroll B.J., Lu G.Q. (Max), Xu Z.P. // Nat. Plants. 2017. V. 3. P. 1–10. https://doi.org/10.1038/nplants.2016.207
- Islam M.T., Sherif S.M. // Int. J. Mol. Sci. 2020. V. 21. P. 2072. https://doi.org/10.3390/ijms21062072
- Konakalla N.C., Bag S., Deraniyagala A.S., Culbreath A.K., Pappu H.R. // Viruses. 2021. V. 13. P. 662. https://doi.org/10.3390/v13040662
- Sundaresha S., Sharma S., Bairwa A., Tomar M., Kumar R., Bhardwaj V., Jeevalatha A., Bakade R., Salaria N., Thakur K., Singh B.P., Chakrabarti S.K. // Pest. Manag. Sci. 2022. V. 78. P. 3183–3192. https://doi.org/10.1002/ps.6949
- Gan D., Zhang J., Jiang H., Jiang T., Zhu S., Cheng B. // Plant Cell Rep. 2010. V. 29. P. 1261–1268. https://doi.org/10.1007/s00299-010-0911-z
- Tenllado F., Martinez-Garcia B., Vargas M., Diaz-Ruiz J.R. // BMC Biotechnol. 2003. V. 3. P. 3. https://doi.org/10.1186/1472-6750-3-3
- Ivanov A.A., Golubeva T.S. // J. Fungi. 2023. V. 9. P. 1100. https://doi.org/10.3390/jof9111100
- Verdonck T.W., Yanden Broeck J. // Front. Physiol. 2022. V. 13. P. 836106. https://doi.org/10.3389/fphys.2022.836106
- Ann S.-J., Donahue K., Koh Y., Martin R.R., Choi M.-Y. // Int. J. Insect Sci. 2019. V. 11. P. 4032. https://doi.org/10.1177/1179543319840323
- Wang Z., Li Y., Zhang B., Gao X., Shi M., Zhang S., Zhong S., Zheng Y., Liu X. // Adv. Funct. Mater. 2023. V. 33. P. 3143. https://doi.org/10.1002/adfm.202213143
- Guan R., Chu D., Han X., Miao X., Li H. // Front. Bioeng. Biotechnol. 2021. V. 9. P. 3790. https://doi.org/10.3389/fbioe.2021.753790
- Strezsak S., Beuning P., Skizim N. // Anal. Methods. 2021. V. 13. P. 179–185. https://doi.org/10.1039/DDAY01498B
- Aranda P.S., Lajoie D.M., Joreyk C.L. // Electrophoresis. 2012. V. 33. P. 366–369. https://doi.org/10.1002/elps.20110335
- Livshits M.A., Amosova O.A., Lyubchenko Y.L. // J. Biomol. Struct. Dyn. 1990. V. 7. P. 1237–1249. https://doi.org/10.1080/073911102.1990.10508562
- Wickham H., Averick M., Bryan J., Chang W., McGowan L.D.A., François R., Grolemund G., Hayes A., Henry L., Hester J., Kuhn M., Pedersen L.T., Miller E., Bache M.S., Muller K., Ooms J., Robinson D., Seidel P.D., Spinu V., Takahashi K., Yanghan D., Wilke C., Woo K., Yutani H. // J. Open Source Softw. 2019. V. 4. P. 1686. https://doi.org/10.21105/joss.01686
Қосымша файлдар
