Thermal and Luminescent Properties of Multi-Ligand Complexes of Europium(III) with Pyrazine-2-carboxylic Acid

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Eu(III) compounds with pyrazine-2-carboxylic acid and nitrogen- and phosphorus-containing neutral ligands were synthesized. Using the methods of chemical elemental and thermal analysis and IR spectroscopy, the composition of the complexes and the method of coordination of carboxylate ions were established. The most thermally stable compounds have been identified. The luminescent characteristics of complex compounds have been studied. It was found that the maximum luminescence intensity is characteristic of europium(III) pyrazinate with triphenylphosphine oxide. The morphological structure and dispersion of the complexes were determined.

Texto integral

Acesso é fechado

Sobre autores

I. Kalinovskaya

Institute of Chemistry, Far-Eastern Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: kalinovskaya@ich.dvo.ru
ORCID ID: 0000-0001-6858-6595
Rússia, Vladivostok

A. Zadorozhnaya

Pacific State Medical University of the Ministry of Health of the Russian Federation

Email: kalinovskaya@ich.dvo.ru
ORCID ID: 0000-0002-1494-3769
Rússia, Vladivostok

V. Kuryavy

Institute of Chemistry, Far-Eastern Branch of the Russian Academy of Sciences

Email: kalinovskaya@ich.dvo.ru
Rússia, Vladivostok

L. Popov

Southern Federal University

Email: kalinovskaya@ich.dvo.ru
ORCID ID: 0000-0001-9565-8005
Rússia, Rostov-on-Don

Bibliografia

  1. de Sá G.F., Malta O.L., de Mello Donegá C., Simas A.M., Longo R.L., Santa-Cruz P.A., da Silva E.F., Jr. // Coord. Chem. Rev. 2000. Vol. 196. P. 165. doi: 10.1016/S0010-8545(99)00054-5
  2. Kalinovskaya I.V., Zadorozhnaya A.N. // J. Mol. Struct. 2017. Vol. 1157. P. 14. doi: 10.1016/j.molstruc.2017.11.035
  3. Kataoka H., Kitano T., Takizawa T., Hirai Y., Nakanishi T., Hasegawa Y. // J. Alloys Compd. 2014. Vol. 601. P. 293. doi: 10.1016/j.jallcom.2014.01.165
  4. Hasegawa Y., Nakanishi T. // RSC. Adv. 2015. Vol. 5. P. 338. doi: 10.1039/C4RA09255D
  5. Deacon G.B., Forsyth C.M., Junk P.C., Leary S.G. // Z. anorg. allg. Chem. 2008. Vol. 634. N 1. P.91. doi: 10.1002/zaac.200700359
  6. Николаев А.А., Кулясов А.Н., Панюшкин В.Т. // ЖОХ. 2021. Т. 91. № 1. С. 131. doi: 10.31857/S0044460X21010145; Nikolaev A.A., Kulyasov A.N., Panyushkin V.T. // Russ. J. Gen. Chem. 2020. Vol. 90. P. 2498. doi: 10.1134/S1070363220120439
  7. Bunzli J.-C.G., Eliseeva S.V. // J. Chem. Sci. 2013. Vol. 4. N 5. P. 1939. doi: 10.1039/C3SC22126A
  8. Калиновская И.В., Задорожная А.Н., Савченко Н.Н. // ЖОХ. 2019. Т. 89. № 11. C. 1780. doi: 10.1134/S0044460X19110192; Kalinovskaya I.V., Zadorozhnaia A.N., Savchenko N.N. // Russ. J. Gen. chem. 2019. Vol. 89. N 11. P. 2285. doi: 10.1134/S1070363219110197
  9. Калиновская И.В., Задорожная А.Н., Привар Ю.О. // ЖОХ. 2021. Т. 91. № 2. C. 238. doi: 10.31857/S0044460X21020074; Kalinovskaya I.V., Zadorozhnaya A.N., Privar Yu.O. // Russ. J. Gen Сhem. 2021. Vol. 91. N 2. P. 196. doi: 10.1134/S1070363221020079
  10. Utochnikova V.V., Kovalenko A.D., Burlov A.S., Marciniak L., Ananyev I.V., Kalyakina A.S., Kurchavov N.A., Kuzmina N.P. // Dalton Trans. 2015. Vol. 44. P. 12660. doi: 10.1039/C5DT01161B
  11. Serward C., Hu N.X. Wang J. // Chem. Soc. Dalton Trans. 2001. Vol. 1. P. 134. doi: 10.1039/B007866M
  12. Bukvetskii B.V., Kalinovskaya I.V. // J. Fluoresc. 2017. Vol. 27. N 3. P. 773. doi: 10.1007/s10895-016-2009-7
  13. Mesquita M.E., Sa G.F., Malta O.L. // J. Alloys Compd. 1997. Vol. 250. P. 417. doi: 10.1016/S0925-8388(96)02561-3
  14. Киселева Е.А. // Вестн. ЦНИИТ. 2021. C. 68. doi: 10.7868/S2587667821050289
  15. Eliseeva S.V., Mirzov O.V., Troyanov S.I., Vitukhnovsky A.G., Kuzmina N.P. // J. Alloys Compd. 2004. Vol. 374. P. 293. doi: 10.1016/j.jallcom.2003.11.123
  16. Гасанова С.С., Гасанова У.М., Мамедова Л.Н., Мовсумов Е. // Евразийский союз ученых. 2020. Т. 81. № 12. С. 24. doi: 10.31618/ESU.2413-9335.2020.3.81.1155
  17. Kunkely H., Vogler A. // J. Photochem. Photobiol. (A). 2002. Vol. 151. P. 45. doi: 10.1016/S1010-6030(02)00171-5
  18. Ptasiewicz-Bak H., Leciejewicz J., Zachara J. // J. Coord. Chem. 1995. Vol. 36. P. 317. doi 10.1080/ 00958979508022682
  19. Андреев Г.Б., Буданцева Н.А., Перминов В.П., Федосеев А.М. // Радиохимия. 2005. Т. 47. № 1. С. 35.
  20. Накамото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир, 1991. 536 с.
  21. Misra S.N., Singh M. // J. Ind. Chem. Soc. 1983. Vol. 60. N 2. Р. 115.
  22. Pimentel P.M., Oliveira V.S., Silva Z.R., Melo D.M.A., Zinner L.B., Vicentini G., Bombieri G. // Polyhedron. 2000. Vol. 19. P. 2651. doi: 10.1016/S0277-5387(01)00868-3
  23. Беллами Л. Инфракрасные спектры сложных молекул. М.: ИЛ, 1963. 590 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Powder diffractograms of pyca (a), phen (b), Eu(pyca)3phen∙H2O (c), dipy (d), Eu(pyca)3(dipy)2(H2O)2 (e), tppo (f), Eu(pyca)3tppo∙H2O (g), dphg (h), Eu(pyca)3(dphg)2(H2O)2 (i)

Baixar (741KB)
3. Fig. 2. Morphological structure of europium pyrazinates: Eu(pyca)3tppo∙H2O (a), Eu(pyca)3phen∙H2O (b), Eu(pyca)3(dipy)2(H2O)2 (c), Eu(pyca)3(dphg)2(H2O)2 (d)

Baixar (947KB)
4. Fig. 3. Thermograms of europium(III) pyrazinates: Eu(pyca)3(H2O)2 (a), Eu(pyca)3(dipy)2(H2O)2 (b), Eu(pyca)3(dphg)2(H2O)2 (c), Eu(pyca)3tppo∙H2O (d)

Baixar (657KB)
5. Fig. 4. IR spectra of samples: pyca (a), Eu(pyca)3tppo∙H2O (b), Eu(pyca)3(H2O)2 (c), Eu(pyca)3(dphg)2(H2O)2 (d), Eu(pyca)3phen∙H2O (e), Eu(pyca)3(dipy)2(H2O)2 (f)

Baixar (1MB)
6. Fig. 5. Excitation spectra of luminescence (a) and luminescence (b): 1 - Eu(pyca)3phen∙H2O, 2 - Eu(pyca)3(H2O)2, 3 - Eu(pyca)3(dphg)2(H2O)2, 4 - Eu(pyca)3(dipy)2(H2O)2, 5 - Eu(pyca)3tppo∙H2O (293 K)

Baixar (379KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024