Polythermal study of phase equilibria, solubility and critical phenomena in the ternary system cesium nitrate – water – polyethylene glycol-1500

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Phase equilibria and solubility were studied by the visual-polythermal method in mixtures of components along ten sections of the composition triangle in the range of 10–110°C in the ternary system cesium nitrate – water – polyethylene glycol-1500. Using the method of volume ratio of liquid phases, the temperature of formation of the critical node of the monotectic state (78.8°C) and the dependence of the compositions of solutions corresponding to the critical solubility points of the separation region on temperature were found. The solubility of the components was determined and isothermal phase diagrams of the studied ternary system were constructed at 10.0, 25.0, 40.0, 50.0, 78.8, 90.0, and 100.0°C. It has been established that in the range of 10.0–40.0°С on isothermal diagrams there is a triangle of the eutonic state. Above the temperature of the onset of delamination (78.8°C), a monotectic triangle with adjacent fields of saturated solutions and delamination is realized on the isotherms. The distribution coefficient of polyethylene glycol-1500 between the equilibrium liquid phases of the monotectic state in the range of 78.8–100.0°C was calculated. It has been established that cesium nitrate is effective as a salting out agent for polyethylene glycol-1500 at temperatures above 90.0°C. At all temperatures in the study interval, polyethylene glycol-1500 significantly reduces the solubility of cesium nitrate in water.

全文:

受限制的访问

作者简介

D. Cherkasov

Saratov National Research State University

编辑信件的主要联系方式.
Email: dgcherkasov@mail.ru
俄罗斯联邦, Saratov, 410012

Y. Klimova

Saratov National Research State University

Email: dgcherkasov@mail.ru
俄罗斯联邦, Saratov, 410012

V. Danilina

Saratov National Research State University

Email: dgcherkasov@mail.ru
俄罗斯联邦, Saratov, 410012

K. Ilin

Saratov National Research State University

Email: dgcherkasov@mail.ru
俄罗斯联邦, Saratov, 410012

K. Zubarev

Saratov National Research State University

Email: dgcherkasov@mail.ru
俄罗斯联邦, Saratov, 410012

参考

  1. Nemati-Kande E., Azizi Z., Mokarizadeh M. // Sci Rep. 2023. V. 13. № 1. P. 1045.https://doi.org/10.1038/s41598-023-28046-9
  2. Mokarizadeh M., Nemati-Kande E. // J. Chem. Eng. Data. 2022. V. 67. № 5. P. 1237.https://doi.org/10.1021/acs.jced.2c00091
  3. Oliveira A.C., Sosa F.H.B., Costa M.C. et al. // Fluid Phase Equilib. 2018. V. 476. P. 118.https://doi.org/10.1016/j.fluid.2018.07.035
  4. Milevskiy N.A., Boryagina I.V., Karpukhina E.A. et al. // J. Chem. Eng. Data. 2021. V. 66. № 2. P. 1021.https://doi.org/10.1021/acs.jced.0c00832
  5. Pirdashti M., Bozorgzadeh A., Ketabi M. et al. // Fluid Phase Equilib. 2019. V. 485. P. 158.https://doi.org/10.1016/j.fluid.2018.12.021
  6. Pirdashti M., Heidari Z., Abbasi F.N. et al. // J. Chem. Eng. Data. 2021. V. 66. № 3. P. 1425.https://doi.org/10.1021/acs.jced.0c01029
  7. Huang Q., Li M., Wang L. et al. // J. Chem. Thermodyn. 2020. V. 150. P. 106221.https://doi.org/10.1016/j.jct.2020.106221
  8. Jimenez Y.P., Galleguillos H.R., Morales J.W. et al. // J. Mol. Liq. 2019. V. 286. P. 110922.https://doi.org/10.1016/j.molliq.2019.110922
  9. Barani A., Pirdashti M., Heidari Z. et al. // Fluid Phase Equilib. 2018. V. 459. P. 1.https://doi.org/10.1016/j.fluid.2017.11.037
  10. Maolan Li, Wang L., Zheng H. et al. // Russ. J. Phys. Chem. A. 2019. V. 93. № 13. P. 2586.https://doi.org/10.1134/S0036024419130144
  11. Shahrokhi B., Pirdashti M., Arzideh S.M. // J. Dispersion Sci. Technol. 2022. V. 43. № 11. P. 1603.https://doi.org/10.1080/01932691.2021.1878036
  12. Rodrigues Barreto C.L., de Sousa Castro S., Cardozo de Souza Júnior E. et al. // J. Chem. Eng. Data. 2019. V. 64. № 2. P. 810.https://doi.org/10.1021/acs.jced.8b01113
  13. Sadeghi R., Jahani F. // J. Phys. Chem. B. 2012. V. 116. № 17. P. 5234.https://doi.org/10.1021/jp300665b
  14. Graber T.A., Taboada M.E., Asenjo J.A. et al. // J. Chem. Eng. Data. 2001. V. 46. № 3. P. 765.https://doi.org/10.1021/je000372n
  15. Graber T.A., Taboada M.E., Cartón A. et al. // J. Chem. Eng. Data. 2000. V. 45. № 2. P. 182.https://doi.org/10.1021/je990225t
  16. Jimenez Y.P., Galleguillos H.R. // J. Chem. Thermodyn. 2011. V. 43. № 11. P. 1573.https://doi.org/10.1016/j.jct.2011.05.007
  17. Zakhodyaeva Y.A., Rudakov D.G., Solov’ev V.O. et al. // J. Chem. Eng. Data. 2019. V. 64. № 3. P. 1250.https://doi.org/10.1021/acs.jced.8b01138
  18. Федорова М.И., Заходяева Ю.А., Зиновьева И.В. и др. // Изв. АН. Сер. хим. 2020. Т. 69. № 7. С. 1344.https://doi.org/10.1007/s11172-020-2908-2
  19. Levina A.V., Fedorov A.Ya., Fedorova M.I. // IOP Conf. Ser.: Mater. Sci. Eng. 2022. V. 1212. P. 012023.https://doi.org/10.1088/1757-899X/1212/1/012023
  20. Fedorov A., Levina A.V., Fedorova M.I. // IOP Conf. Ser.: Mater. Sci. Eng. 2022. V. 1212. P. 012012.https://doi.org/10.1088/1757-899X/1212/1/012012
  21. Levina A.V., Fedorova M.I. // IOP Conf. Ser.: Mater. Sci. Eng. 2022. V. 1212. P. 012013.https://doi.org/10.1088/1757-899X/1212/1/012013
  22. Федорова М.И., Левина А.В., Заходяева Ю.А. и др. // Теор. основы хим. технологии. 2020. Т. 54. № 4. С. 475.
  23. Zakhodyaeva Y.A., Zinov’eva I.V., Tokar E.S. et al. // Molecules. 2019. V. 24. № 22. P. 4078.https://doi.org/10.3390/molecules24224078
  24. Харченко А.В., Егорова Е.М., Гаркушин И.К. // Журн. неорган. химии. 2022. Т. 67. № 2. С. 224.https://doi.org/10.31857/S0044457X22020064
  25. Подвальная Н.В., Захарова Г.С. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 300.https://doi.org/10.31857/S0044457X22601389
  26. Плющев В.Е., Степин Б.Д. Химия и технология соединений лития, рубидия и цезия. М.: Химия, 1970.
  27. Yu X., Lin W., Li M. et al. // J. Chem. Thermodyn. 2019. V. 135. P. 45.https://doi.org/10.1016/j.jct.2019.03.020
  28. Lin W., Zheng H., Shuai C. et al. // J. Solution Chem. 2020. V. 47. P. 1382.https://doi.org/10.1007/s10953-020-00985-1
  29. Mcgarvey P.W., Hoffmann M.M. // Tenside Surf. Det. 2018. V. 55. № 3. P. 203.https://doi.org/10.3139/113.110555
  30. Юхно Г.Д., Красноперова А.П. // Журн. физ. химии. 2013. Т. 87. № 12. С. 2074.https://doi.org/10.1134/s0036024413120273
  31. Hu M., Zhai Q., Jiang Y. et al. // J. Chem. Eng. Data. 2004. V. 49. № 5. P. 1440.https://doi.org/10.1021/je0498558
  32. Ma B., Hu M., Li S. et al. // J. Chem. Eng. Data. 2005. V. 50. № 3. P. 792.https://doi.org/10.1021/je049757m
  33. Chamberlin R.M., Abney K.D. // J. Radioanal. Nucl. Chem. 1999. V. 240. № 2. P. 547.https://doi.org/10.1007/bf02349412
  34. Черкасов Д.Г., Курский В.Ф., Ильин К.К. // Журн. неорган. химии. 2008. Т. 53. № 1. C. 146.
  35. Аносов В.Я., Озерова М.И., Фиалков Ю.Я. Основы физико-химического анализа. М.: Наука, 1976.
  36. Ильин К.К., Черкасов Д.Г. Топология фазовых диаграмм тройных систем соль–два растворителя с всаливанием–высаливанием. Саратов: Изд-во Сарат. ун-та, 2020.
  37. Трейбал Р. Жидкостная экстракция / Пер. с англ. под ред. Кагана С.З. М.: Химия, 1966.
  38. Зубарев К.Е., Климова Я.С., Суворова Н.И. и др. // XII Междунар. Курнаковское совещ. по физ.-хим. анализу. Сб. статей. СПб: Политех-пресс, 2022. 116 c.
  39. Киргинцев А.Н., Трушникова Л.Н., Лаврентьева В.Г. Растворимость неорганических веществ в воде: Справочник. Л.: Химия, 1972.
  40. Справочник по растворимости: Бинарные системы / Под ред. Кафарова В.В. М.; Л.: Изд-во АН СССР, 1961, 1962. Т. 1. кн. 1, 2.
  41. Черкасов Д.Г., Курский В.Ф., Синегубова С.И. и др. // Журн. неорган. химии. 2009. Т. 54. № 6. С. 1032.
  42. Смотров М.П., Черкасов Д.Г., Ильин К.К. // Журн. неорган. химии. 2017. Т. 62. № 3. С. 375.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Results of full-profile analysis of the CsNO₃ diffraction pattern (green curve). Peak positions according to the processing results (blue curve) and according to PDF # 01-077-2264 (CsNO₃, space group P31, red curve).

下载 (266KB)
3. Fig. 2. Polytherms of phase states of mixtures of components in sections IV, VI and IX of the triangle of compositions of the cesium nitrate–water–polyethylene glycol-1500 system.

下载 (178KB)
4. Fig. 3. Dependences of the content of a mixture of PEG-1500 with water and cesium nitrate at the point of contact of four fields of phase states (l, l + S, l + S₁, l + S + S₁) on sections V–VIII of the ternary system cesium nitrate–water–PEG-1500 on temperature.

下载 (80KB)
5. Fig. 4. Dependences of the content of cesium nitrate and PEG-1500 in critical solutions on temperature in the ternary system cesium nitrate–water–polyethylene glycol-1500.

下载 (71KB)
6. Fig. 5. Isotherms of phase states (wt.%) of the ternary system cesium nitrate–water–polyethylene glycol-1500 at 10.0, 25.0 and 40.0°C.

下载 (164KB)
7. Fig. 6. Isotherms of phase states (wt.%) of the ternary system cesium nitrate–water–polyethylene glycol-1500 at 50.0, 78.8, 90.0 and 100.0°C.

下载 (262KB)

版权所有 © Russian Academy of Sciences, 2025